L(s) = 1 | + (2.82 + 2.82i)7-s + 5.65i·11-s + (−3 − 3i)13-s + (−1 + i)17-s + 5.65·19-s + (−2.82 + 2.82i)23-s + 4i·29-s + (−5 + 5i)37-s + (2.82 − 2.82i)43-s + (−2.82 − 2.82i)47-s + 9.00i·49-s + (1 + i)53-s − 11.3·59-s + 4·61-s + (−2.82 − 2.82i)67-s + ⋯ |
L(s) = 1 | + (1.06 + 1.06i)7-s + 1.70i·11-s + (−0.832 − 0.832i)13-s + (−0.242 + 0.242i)17-s + 1.29·19-s + (−0.589 + 0.589i)23-s + 0.742i·29-s + (−0.821 + 0.821i)37-s + (0.431 − 0.431i)43-s + (−0.412 − 0.412i)47-s + 1.28i·49-s + (0.137 + 0.137i)53-s − 1.47·59-s + 0.512·61-s + (−0.345 − 0.345i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 - 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.597827868\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.597827868\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-2.82 - 2.82i)T + 7iT^{2} \) |
| 11 | \( 1 - 5.65iT - 11T^{2} \) |
| 13 | \( 1 + (3 + 3i)T + 13iT^{2} \) |
| 17 | \( 1 + (1 - i)T - 17iT^{2} \) |
| 19 | \( 1 - 5.65T + 19T^{2} \) |
| 23 | \( 1 + (2.82 - 2.82i)T - 23iT^{2} \) |
| 29 | \( 1 - 4iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + (5 - 5i)T - 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (-2.82 + 2.82i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.82 + 2.82i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1 - i)T + 53iT^{2} \) |
| 59 | \( 1 + 11.3T + 59T^{2} \) |
| 61 | \( 1 - 4T + 61T^{2} \) |
| 67 | \( 1 + (2.82 + 2.82i)T + 67iT^{2} \) |
| 71 | \( 1 + 5.65iT - 71T^{2} \) |
| 73 | \( 1 + (-3 - 3i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.65T + 79T^{2} \) |
| 83 | \( 1 + (2.82 - 2.82i)T - 83iT^{2} \) |
| 89 | \( 1 - 8iT - 89T^{2} \) |
| 97 | \( 1 + (-3 + 3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.794796025728683514956336449650, −7.913047109868366266505926922030, −7.51390359981155042970980433307, −6.68655004300170128442774677577, −5.45738358289832092741758954516, −5.17197427931218091411101764151, −4.41517846647434849297529089030, −3.18315848910153165069586832434, −2.22214724967517208015401005097, −1.52282754867929191619145003511,
0.46744966646273437289178753980, 1.51035261332147738061972477188, 2.69443330031777719240047533335, 3.71648414277240351807893849025, 4.44931284907403082260903561480, 5.20762519778478018989846180889, 6.04255652033969541337234493063, 6.94392528987117401848515753958, 7.64257309698909325788279014951, 8.167728715279014914564746515498