L(s) = 1 | + (2.82 + 2.82i)7-s + 5.65i·11-s + (−3 − 3i)13-s + (−1 + i)17-s + 5.65·19-s + (−2.82 + 2.82i)23-s + 4i·29-s + (−5 + 5i)37-s + (2.82 − 2.82i)43-s + (−2.82 − 2.82i)47-s + 9.00i·49-s + (1 + i)53-s − 11.3·59-s + 4·61-s + (−2.82 − 2.82i)67-s + ⋯ |
L(s) = 1 | + (1.06 + 1.06i)7-s + 1.70i·11-s + (−0.832 − 0.832i)13-s + (−0.242 + 0.242i)17-s + 1.29·19-s + (−0.589 + 0.589i)23-s + 0.742i·29-s + (−0.821 + 0.821i)37-s + (0.431 − 0.431i)43-s + (−0.412 − 0.412i)47-s + 1.28i·49-s + (0.137 + 0.137i)53-s − 1.47·59-s + 0.512·61-s + (−0.345 − 0.345i)67-s + ⋯ |
Λ(s)=(=(3600s/2ΓC(s)L(s)(−0.525−0.850i)Λ(2−s)
Λ(s)=(=(3600s/2ΓC(s+1/2)L(s)(−0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
3600
= 24⋅32⋅52
|
Sign: |
−0.525−0.850i
|
Analytic conductor: |
28.7461 |
Root analytic conductor: |
5.36154 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3600(2143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3600, ( :1/2), −0.525−0.850i)
|
Particular Values
L(1) |
≈ |
1.597827868 |
L(21) |
≈ |
1.597827868 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−2.82−2.82i)T+7iT2 |
| 11 | 1−5.65iT−11T2 |
| 13 | 1+(3+3i)T+13iT2 |
| 17 | 1+(1−i)T−17iT2 |
| 19 | 1−5.65T+19T2 |
| 23 | 1+(2.82−2.82i)T−23iT2 |
| 29 | 1−4iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+(5−5i)T−37iT2 |
| 41 | 1+41T2 |
| 43 | 1+(−2.82+2.82i)T−43iT2 |
| 47 | 1+(2.82+2.82i)T+47iT2 |
| 53 | 1+(−1−i)T+53iT2 |
| 59 | 1+11.3T+59T2 |
| 61 | 1−4T+61T2 |
| 67 | 1+(2.82+2.82i)T+67iT2 |
| 71 | 1+5.65iT−71T2 |
| 73 | 1+(−3−3i)T+73iT2 |
| 79 | 1−5.65T+79T2 |
| 83 | 1+(2.82−2.82i)T−83iT2 |
| 89 | 1−8iT−89T2 |
| 97 | 1+(−3+3i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.794796025728683514956336449650, −7.913047109868366266505926922030, −7.51390359981155042970980433307, −6.68655004300170128442774677577, −5.45738358289832092741758954516, −5.17197427931218091411101764151, −4.41517846647434849297529089030, −3.18315848910153165069586832434, −2.22214724967517208015401005097, −1.52282754867929191619145003511,
0.46744966646273437289178753980, 1.51035261332147738061972477188, 2.69443330031777719240047533335, 3.71648414277240351807893849025, 4.44931284907403082260903561480, 5.20762519778478018989846180889, 6.04255652033969541337234493063, 6.94392528987117401848515753958, 7.64257309698909325788279014951, 8.167728715279014914564746515498