Properties

Label 2-363-1.1-c1-0-8
Degree $2$
Conductor $363$
Sign $-1$
Analytic cond. $2.89856$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·2-s − 3-s + 0.999·4-s − 3·5-s + 1.73·6-s + 3.46·7-s + 1.73·8-s + 9-s + 5.19·10-s − 0.999·12-s + 1.73·13-s − 5.99·14-s + 3·15-s − 5·16-s − 1.73·17-s − 1.73·18-s − 6.92·19-s − 2.99·20-s − 3.46·21-s − 6·23-s − 1.73·24-s + 4·25-s − 2.99·26-s − 27-s + 3.46·28-s + 1.73·29-s − 5.19·30-s + ⋯
L(s)  = 1  − 1.22·2-s − 0.577·3-s + 0.499·4-s − 1.34·5-s + 0.707·6-s + 1.30·7-s + 0.612·8-s + 0.333·9-s + 1.64·10-s − 0.288·12-s + 0.480·13-s − 1.60·14-s + 0.774·15-s − 1.25·16-s − 0.420·17-s − 0.408·18-s − 1.58·19-s − 0.670·20-s − 0.755·21-s − 1.25·23-s − 0.353·24-s + 0.800·25-s − 0.588·26-s − 0.192·27-s + 0.654·28-s + 0.321·29-s − 0.948·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2.89856\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
11 \( 1 \)
good2 \( 1 + 1.73T + 2T^{2} \)
5 \( 1 + 3T + 5T^{2} \)
7 \( 1 - 3.46T + 7T^{2} \)
13 \( 1 - 1.73T + 13T^{2} \)
17 \( 1 + 1.73T + 17T^{2} \)
19 \( 1 + 6.92T + 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 - 1.73T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 11T + 37T^{2} \)
41 \( 1 - 1.73T + 41T^{2} \)
43 \( 1 + 3.46T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 9T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 2T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 6.92T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 9T + 89T^{2} \)
97 \( 1 + 7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88929931871862449135005452623, −10.28328728028678558856477572353, −8.789592707949681467230495188896, −8.233106999068815384359466088835, −7.59634104912019193486672986525, −6.45942841117226412127905637665, −4.78736398400057893106922846764, −4.08874146042552895871178962658, −1.70975558990753806142579652840, 0, 1.70975558990753806142579652840, 4.08874146042552895871178962658, 4.78736398400057893106922846764, 6.45942841117226412127905637665, 7.59634104912019193486672986525, 8.233106999068815384359466088835, 8.789592707949681467230495188896, 10.28328728028678558856477572353, 10.88929931871862449135005452623

Graph of the $Z$-function along the critical line