L(s) = 1 | + (−0.690 + 2.12i)2-s + (−0.809 + 0.587i)3-s + (−2.42 − 1.76i)4-s + (0.618 + 1.90i)5-s + (−0.690 − 2.12i)6-s + (−3.61 − 2.62i)7-s + (1.80 − 1.31i)8-s + (0.309 − 0.951i)9-s − 4.47·10-s + 3·12-s + (8.09 − 5.87i)14-s + (−1.61 − 1.17i)15-s + (−0.309 − 0.951i)16-s + (−1.38 − 4.25i)17-s + (1.80 + 1.31i)18-s + (−3.61 + 2.62i)19-s + ⋯ |
L(s) = 1 | + (−0.488 + 1.50i)2-s + (−0.467 + 0.339i)3-s + (−1.21 − 0.881i)4-s + (0.276 + 0.850i)5-s + (−0.282 − 0.868i)6-s + (−1.36 − 0.993i)7-s + (0.639 − 0.464i)8-s + (0.103 − 0.317i)9-s − 1.41·10-s + 0.866·12-s + (2.16 − 1.57i)14-s + (−0.417 − 0.303i)15-s + (−0.0772 − 0.237i)16-s + (−0.335 − 1.03i)17-s + (0.426 + 0.309i)18-s + (−0.830 + 0.603i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.569 + 0.821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.690 - 2.12i)T + (-1.61 - 1.17i)T^{2} \) |
| 5 | \( 1 + (-0.618 - 1.90i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (3.61 + 2.62i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (1.38 + 4.25i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (3.61 - 2.62i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 + (-3.61 - 2.62i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (1.61 + 1.17i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (3.61 - 2.62i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 4.47T + 43T^{2} \) |
| 47 | \( 1 + (6.47 - 4.70i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.85 + 5.70i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (2.76 + 8.50i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 12T + 67T^{2} \) |
| 71 | \( 1 + (2.47 + 7.60i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (7.23 + 5.25i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (4.14 - 12.7i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.76 - 8.50i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 14T + 89T^{2} \) |
| 97 | \( 1 + (-0.618 + 1.90i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89586377851748224568865396089, −10.05348452180264706994765430231, −9.562941994497872692304665891305, −8.316925767634156724823786351147, −7.08636131381566549613954010335, −6.65347699744298434320375230247, −5.95499319061068649806064755413, −4.57766661514690438307229868508, −3.16544726887110387131289330136, 0,
1.74997079322915784401467708903, 2.91730361629439287662523984329, 4.30780903858763957364065878385, 5.76349084039087260304377611668, 6.60539953686446730429116473884, 8.488713369923183173420331367884, 8.944652116474531204865782281404, 9.925112454718506083738898296916, 10.55474462393294047640874709830