L(s) = 1 | + (0.309 + 0.951i)2-s + (0.809 + 0.587i)3-s + (0.809 − 0.587i)4-s + (−0.618 + 1.90i)5-s + (−0.309 + 0.951i)6-s + (−3.23 + 2.35i)7-s + (2.42 + 1.76i)8-s + (0.309 + 0.951i)9-s − 1.99·10-s + 12-s + (−0.618 − 1.90i)13-s + (−3.23 − 2.35i)14-s + (−1.61 + 1.17i)15-s + (−0.309 + 0.951i)16-s + (−0.618 + 1.90i)17-s + (−0.809 + 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (0.467 + 0.339i)3-s + (0.404 − 0.293i)4-s + (−0.276 + 0.850i)5-s + (−0.126 + 0.388i)6-s + (−1.22 + 0.888i)7-s + (0.858 + 0.623i)8-s + (0.103 + 0.317i)9-s − 0.632·10-s + 0.288·12-s + (−0.171 − 0.527i)13-s + (−0.864 − 0.628i)14-s + (−0.417 + 0.303i)15-s + (−0.0772 + 0.237i)16-s + (−0.149 + 0.461i)17-s + (−0.190 + 0.138i)18-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)(−0.353−0.935i)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)(−0.353−0.935i)Λ(1−s)
Degree: |
2 |
Conductor: |
363
= 3⋅112
|
Sign: |
−0.353−0.935i
|
Analytic conductor: |
2.89856 |
Root analytic conductor: |
1.70251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ363(148,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 363, ( :1/2), −0.353−0.935i)
|
Particular Values
L(1) |
≈ |
0.974455+1.41055i |
L(21) |
≈ |
0.974455+1.41055i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.809−0.587i)T |
| 11 | 1 |
good | 2 | 1+(−0.309−0.951i)T+(−1.61+1.17i)T2 |
| 5 | 1+(0.618−1.90i)T+(−4.04−2.93i)T2 |
| 7 | 1+(3.23−2.35i)T+(2.16−6.65i)T2 |
| 13 | 1+(0.618+1.90i)T+(−10.5+7.64i)T2 |
| 17 | 1+(0.618−1.90i)T+(−13.7−9.99i)T2 |
| 19 | 1+(5.87+18.0i)T2 |
| 23 | 1−8T+23T2 |
| 29 | 1+(−4.85+3.52i)T+(8.96−27.5i)T2 |
| 31 | 1+(2.47+7.60i)T+(−25.0+18.2i)T2 |
| 37 | 1+(4.85−3.52i)T+(11.4−35.1i)T2 |
| 41 | 1+(−1.61−1.17i)T+(12.6+38.9i)T2 |
| 43 | 1+43T2 |
| 47 | 1+(6.47+4.70i)T+(14.5+44.6i)T2 |
| 53 | 1+(−1.85−5.70i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−3.23+2.35i)T+(18.2−56.1i)T2 |
| 61 | 1+(−1.85+5.70i)T+(−49.3−35.8i)T2 |
| 67 | 1+4T+67T2 |
| 71 | 1+(−57.4−41.7i)T2 |
| 73 | 1+(−11.3+8.22i)T+(22.5−69.4i)T2 |
| 79 | 1+(1.23+3.80i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−3.70+11.4i)T+(−67.1−48.7i)T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+(−0.618−1.90i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.57778503536895069531849954518, −10.68701959529235408724984463823, −9.915337920478613587978758216247, −8.906440147328885491272228670600, −7.78122843560863100468635410167, −6.81057888190689486542293042825, −6.12939827787071646739158165392, −5.01996649427904164347262499036, −3.36630142253116666738903155914, −2.49305920810547584736436509893,
1.11815953635356804128445641742, 2.84159272493449859583913090954, 3.73277125721217829323215573586, 4.86006298046175427579273892712, 6.85404144959143447746038206651, 7.05653010587958517994736824559, 8.460933933069173747466104717324, 9.341752160223365752200375313903, 10.33201509040870328238300366019, 11.21859219303426925048665235909