L(s) = 1 | + (0.309 + 0.951i)2-s + (0.809 + 0.587i)3-s + (0.809 − 0.587i)4-s + (−0.618 + 1.90i)5-s + (−0.309 + 0.951i)6-s + (−3.23 + 2.35i)7-s + (2.42 + 1.76i)8-s + (0.309 + 0.951i)9-s − 1.99·10-s + 12-s + (−0.618 − 1.90i)13-s + (−3.23 − 2.35i)14-s + (−1.61 + 1.17i)15-s + (−0.309 + 0.951i)16-s + (−0.618 + 1.90i)17-s + (−0.809 + 0.587i)18-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (0.467 + 0.339i)3-s + (0.404 − 0.293i)4-s + (−0.276 + 0.850i)5-s + (−0.126 + 0.388i)6-s + (−1.22 + 0.888i)7-s + (0.858 + 0.623i)8-s + (0.103 + 0.317i)9-s − 0.632·10-s + 0.288·12-s + (−0.171 − 0.527i)13-s + (−0.864 − 0.628i)14-s + (−0.417 + 0.303i)15-s + (−0.0772 + 0.237i)16-s + (−0.149 + 0.461i)17-s + (−0.190 + 0.138i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.353 - 0.935i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.353 - 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.974455 + 1.41055i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.974455 + 1.41055i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.309 - 0.951i)T + (-1.61 + 1.17i)T^{2} \) |
| 5 | \( 1 + (0.618 - 1.90i)T + (-4.04 - 2.93i)T^{2} \) |
| 7 | \( 1 + (3.23 - 2.35i)T + (2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (0.618 + 1.90i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.618 - 1.90i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 8T + 23T^{2} \) |
| 29 | \( 1 + (-4.85 + 3.52i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (2.47 + 7.60i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (4.85 - 3.52i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-1.61 - 1.17i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + (6.47 + 4.70i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-1.85 - 5.70i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-3.23 + 2.35i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-1.85 + 5.70i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-11.3 + 8.22i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (1.23 + 3.80i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-3.70 + 11.4i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (-0.618 - 1.90i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.57778503536895069531849954518, −10.68701959529235408724984463823, −9.915337920478613587978758216247, −8.906440147328885491272228670600, −7.78122843560863100468635410167, −6.81057888190689486542293042825, −6.12939827787071646739158165392, −5.01996649427904164347262499036, −3.36630142253116666738903155914, −2.49305920810547584736436509893,
1.11815953635356804128445641742, 2.84159272493449859583913090954, 3.73277125721217829323215573586, 4.86006298046175427579273892712, 6.85404144959143447746038206651, 7.05653010587958517994736824559, 8.460933933069173747466104717324, 9.341752160223365752200375313903, 10.33201509040870328238300366019, 11.21859219303426925048665235909