L(s) = 1 | + (0.190 − 0.587i)2-s + (−0.809 + 0.587i)3-s + (1.30 + 0.951i)4-s + (−0.809 − 2.48i)5-s + (0.190 + 0.587i)6-s + (2.42 + 1.76i)7-s + (1.80 − 1.31i)8-s + (0.309 − 0.951i)9-s − 1.61·10-s − 1.61·12-s + (−0.545 + 1.67i)13-s + (1.5 − 1.08i)14-s + (2.11 + 1.53i)15-s + (0.572 + 1.76i)16-s + (−0.5 − 1.53i)17-s + (−0.5 − 0.363i)18-s + ⋯ |
L(s) = 1 | + (0.135 − 0.415i)2-s + (−0.467 + 0.339i)3-s + (0.654 + 0.475i)4-s + (−0.361 − 1.11i)5-s + (0.0779 + 0.239i)6-s + (0.917 + 0.666i)7-s + (0.639 − 0.464i)8-s + (0.103 − 0.317i)9-s − 0.511·10-s − 0.467·12-s + (−0.151 + 0.465i)13-s + (0.400 − 0.291i)14-s + (0.546 + 0.397i)15-s + (0.143 + 0.440i)16-s + (−0.121 − 0.373i)17-s + (−0.117 − 0.0856i)18-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)(0.944+0.329i)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)(0.944+0.329i)Λ(1−s)
Degree: |
2 |
Conductor: |
363
= 3⋅112
|
Sign: |
0.944+0.329i
|
Analytic conductor: |
2.89856 |
Root analytic conductor: |
1.70251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ363(130,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 363, ( :1/2), 0.944+0.329i)
|
Particular Values
L(1) |
≈ |
1.53544−0.260524i |
L(21) |
≈ |
1.53544−0.260524i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.809−0.587i)T |
| 11 | 1 |
good | 2 | 1+(−0.190+0.587i)T+(−1.61−1.17i)T2 |
| 5 | 1+(0.809+2.48i)T+(−4.04+2.93i)T2 |
| 7 | 1+(−2.42−1.76i)T+(2.16+6.65i)T2 |
| 13 | 1+(0.545−1.67i)T+(−10.5−7.64i)T2 |
| 17 | 1+(0.5+1.53i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−4.73+3.44i)T+(5.87−18.0i)T2 |
| 23 | 1−3.47T+23T2 |
| 29 | 1+(−3.61−2.62i)T+(8.96+27.5i)T2 |
| 31 | 1+(−0.881+2.71i)T+(−25.0−18.2i)T2 |
| 37 | 1+(0.190+0.138i)T+(11.4+35.1i)T2 |
| 41 | 1+(9.66−7.02i)T+(12.6−38.9i)T2 |
| 43 | 1+6.23T+43T2 |
| 47 | 1+(1.30−0.951i)T+(14.5−44.6i)T2 |
| 53 | 1+(2.97−9.14i)T+(−42.8−31.1i)T2 |
| 59 | 1+(8.35+6.06i)T+(18.2+56.1i)T2 |
| 61 | 1+(2.42+7.46i)T+(−49.3+35.8i)T2 |
| 67 | 1+9.56T+67T2 |
| 71 | 1+(1.71+5.29i)T+(−57.4+41.7i)T2 |
| 73 | 1+(2.61+1.90i)T+(22.5+69.4i)T2 |
| 79 | 1+(2.92−9.00i)T+(−63.9−46.4i)T2 |
| 83 | 1+(0.218+0.673i)T+(−67.1+48.7i)T2 |
| 89 | 1−0.527T+89T2 |
| 97 | 1+(4.33−13.3i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.68234759032165547880557836736, −10.80890217384698239170143399636, −9.513340246454958810914141499282, −8.629486171163322095248239057448, −7.72623546436009186779480678521, −6.59401636727049831138710924878, −5.07337895770830217275557492218, −4.60851830779525113903064995186, −3.05223612619032627501002467731, −1.43607979429484885392370960091,
1.51756182927486248169965921219, 3.14997464555285877804653587573, 4.77994006720615815586308854130, 5.79045300097549793679347253391, 6.88360530153483198766165017126, 7.37859679750734524258532826405, 8.235321082445680556134545230173, 10.18552226632240301940468707306, 10.58556190447344945042600258684, 11.42625515564436929233262615982