L(s) = 1 | + (0.190 − 0.587i)2-s + (−0.809 + 0.587i)3-s + (1.30 + 0.951i)4-s + (−0.809 − 2.48i)5-s + (0.190 + 0.587i)6-s + (2.42 + 1.76i)7-s + (1.80 − 1.31i)8-s + (0.309 − 0.951i)9-s − 1.61·10-s − 1.61·12-s + (−0.545 + 1.67i)13-s + (1.5 − 1.08i)14-s + (2.11 + 1.53i)15-s + (0.572 + 1.76i)16-s + (−0.5 − 1.53i)17-s + (−0.5 − 0.363i)18-s + ⋯ |
L(s) = 1 | + (0.135 − 0.415i)2-s + (−0.467 + 0.339i)3-s + (0.654 + 0.475i)4-s + (−0.361 − 1.11i)5-s + (0.0779 + 0.239i)6-s + (0.917 + 0.666i)7-s + (0.639 − 0.464i)8-s + (0.103 − 0.317i)9-s − 0.511·10-s − 0.467·12-s + (−0.151 + 0.465i)13-s + (0.400 − 0.291i)14-s + (0.546 + 0.397i)15-s + (0.143 + 0.440i)16-s + (−0.121 − 0.373i)17-s + (−0.117 − 0.0856i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.944 + 0.329i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.944 + 0.329i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.53544 - 0.260524i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.53544 - 0.260524i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.809 - 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.190 + 0.587i)T + (-1.61 - 1.17i)T^{2} \) |
| 5 | \( 1 + (0.809 + 2.48i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-2.42 - 1.76i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (0.545 - 1.67i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (0.5 + 1.53i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-4.73 + 3.44i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 - 3.47T + 23T^{2} \) |
| 29 | \( 1 + (-3.61 - 2.62i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.881 + 2.71i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (0.190 + 0.138i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (9.66 - 7.02i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 6.23T + 43T^{2} \) |
| 47 | \( 1 + (1.30 - 0.951i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (2.97 - 9.14i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (8.35 + 6.06i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (2.42 + 7.46i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 9.56T + 67T^{2} \) |
| 71 | \( 1 + (1.71 + 5.29i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (2.61 + 1.90i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (2.92 - 9.00i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (0.218 + 0.673i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 0.527T + 89T^{2} \) |
| 97 | \( 1 + (4.33 - 13.3i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.68234759032165547880557836736, −10.80890217384698239170143399636, −9.513340246454958810914141499282, −8.629486171163322095248239057448, −7.72623546436009186779480678521, −6.59401636727049831138710924878, −5.07337895770830217275557492218, −4.60851830779525113903064995186, −3.05223612619032627501002467731, −1.43607979429484885392370960091,
1.51756182927486248169965921219, 3.14997464555285877804653587573, 4.77994006720615815586308854130, 5.79045300097549793679347253391, 6.88360530153483198766165017126, 7.37859679750734524258532826405, 8.235321082445680556134545230173, 10.18552226632240301940468707306, 10.58556190447344945042600258684, 11.42625515564436929233262615982