L(s) = 1 | + (0.535 − 1.64i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.927 − 2.85i)5-s + (−0.535 − 1.64i)6-s + (2.80 + 2.03i)7-s + (1.40 − 1.01i)8-s + (0.309 − 0.951i)9-s − 5.19·10-s − 0.999·12-s + (−0.535 + 1.64i)13-s + (4.85 − 3.52i)14-s + (−2.42 − 1.76i)15-s + (−1.54 − 4.75i)16-s + (0.535 + 1.64i)17-s + (−1.40 − 1.01i)18-s + ⋯ |
L(s) = 1 | + (0.378 − 1.16i)2-s + (0.467 − 0.339i)3-s + (−0.404 − 0.293i)4-s + (−0.414 − 1.27i)5-s + (−0.218 − 0.672i)6-s + (1.05 + 0.769i)7-s + (0.495 − 0.359i)8-s + (0.103 − 0.317i)9-s − 1.64·10-s − 0.288·12-s + (−0.148 + 0.456i)13-s + (1.29 − 0.942i)14-s + (−0.626 − 0.455i)15-s + (−0.386 − 1.18i)16-s + (0.129 + 0.399i)17-s + (−0.330 − 0.239i)18-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)(−0.577+0.816i)Λ(2−s)
Λ(s)=(=(363s/2ΓC(s+1/2)L(s)(−0.577+0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
363
= 3⋅112
|
Sign: |
−0.577+0.816i
|
Analytic conductor: |
2.89856 |
Root analytic conductor: |
1.70251 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ363(130,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 363, ( :1/2), −0.577+0.816i)
|
Particular Values
L(1) |
≈ |
0.926172−1.78874i |
L(21) |
≈ |
0.926172−1.78874i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.809+0.587i)T |
| 11 | 1 |
good | 2 | 1+(−0.535+1.64i)T+(−1.61−1.17i)T2 |
| 5 | 1+(0.927+2.85i)T+(−4.04+2.93i)T2 |
| 7 | 1+(−2.80−2.03i)T+(2.16+6.65i)T2 |
| 13 | 1+(0.535−1.64i)T+(−10.5−7.64i)T2 |
| 17 | 1+(−0.535−1.64i)T+(−13.7+9.99i)T2 |
| 19 | 1+(5.60−4.07i)T+(5.87−18.0i)T2 |
| 23 | 1+6T+23T2 |
| 29 | 1+(−1.40−1.01i)T+(8.96+27.5i)T2 |
| 31 | 1+(−1.23+3.80i)T+(−25.0−18.2i)T2 |
| 37 | 1+(−8.89−6.46i)T+(11.4+35.1i)T2 |
| 41 | 1+(−1.40+1.01i)T+(12.6−38.9i)T2 |
| 43 | 1−3.46T+43T2 |
| 47 | 1+(14.5−44.6i)T2 |
| 53 | 1+(2.78−8.55i)T+(−42.8−31.1i)T2 |
| 59 | 1+(−4.85−3.52i)T+(18.2+56.1i)T2 |
| 61 | 1+(−49.3+35.8i)T2 |
| 67 | 1+2T+67T2 |
| 71 | 1+(1.85+5.70i)T+(−57.4+41.7i)T2 |
| 73 | 1+(5.60+4.07i)T+(22.5+69.4i)T2 |
| 79 | 1+(−63.9−46.4i)T2 |
| 83 | 1+(−67.1+48.7i)T2 |
| 89 | 1−9T+89T2 |
| 97 | 1+(2.16−6.65i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49649722059092517567676050119, −10.36472215565711527994248399896, −9.255216130614050327366296639752, −8.319502316688747609015933021903, −7.80088092896954727409020780334, −6.04473797560603592611835847145, −4.64389207856629246177084570818, −4.05061497994884935023729049188, −2.35394230324454250808928624287, −1.43492699702706317149551454200,
2.40444172513942350548236196685, 3.97713371202421931921103275932, 4.80527792630616643529422370757, 6.15827007181814166542170597300, 7.14065158232685482207453373692, 7.72405983416698438555192785608, 8.493292356411723490582523298062, 10.08502891966320945913348904617, 10.87346241444923413655565456279, 11.37701627675583626168566167010