L(s) = 1 | + (0.535 − 1.64i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (−0.927 − 2.85i)5-s + (−0.535 − 1.64i)6-s + (2.80 + 2.03i)7-s + (1.40 − 1.01i)8-s + (0.309 − 0.951i)9-s − 5.19·10-s − 0.999·12-s + (−0.535 + 1.64i)13-s + (4.85 − 3.52i)14-s + (−2.42 − 1.76i)15-s + (−1.54 − 4.75i)16-s + (0.535 + 1.64i)17-s + (−1.40 − 1.01i)18-s + ⋯ |
L(s) = 1 | + (0.378 − 1.16i)2-s + (0.467 − 0.339i)3-s + (−0.404 − 0.293i)4-s + (−0.414 − 1.27i)5-s + (−0.218 − 0.672i)6-s + (1.05 + 0.769i)7-s + (0.495 − 0.359i)8-s + (0.103 − 0.317i)9-s − 1.64·10-s − 0.288·12-s + (−0.148 + 0.456i)13-s + (1.29 − 0.942i)14-s + (−0.626 − 0.455i)15-s + (−0.386 − 1.18i)16-s + (0.129 + 0.399i)17-s + (−0.330 − 0.239i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.926172 - 1.78874i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.926172 - 1.78874i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.535 + 1.64i)T + (-1.61 - 1.17i)T^{2} \) |
| 5 | \( 1 + (0.927 + 2.85i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (-2.80 - 2.03i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (0.535 - 1.64i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.535 - 1.64i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (5.60 - 4.07i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 6T + 23T^{2} \) |
| 29 | \( 1 + (-1.40 - 1.01i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.23 + 3.80i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-8.89 - 6.46i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-1.40 + 1.01i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 - 3.46T + 43T^{2} \) |
| 47 | \( 1 + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (2.78 - 8.55i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-4.85 - 3.52i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + 2T + 67T^{2} \) |
| 71 | \( 1 + (1.85 + 5.70i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (5.60 + 4.07i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 - 9T + 89T^{2} \) |
| 97 | \( 1 + (2.16 - 6.65i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49649722059092517567676050119, −10.36472215565711527994248399896, −9.255216130614050327366296639752, −8.319502316688747609015933021903, −7.80088092896954727409020780334, −6.04473797560603592611835847145, −4.64389207856629246177084570818, −4.05061497994884935023729049188, −2.35394230324454250808928624287, −1.43492699702706317149551454200,
2.40444172513942350548236196685, 3.97713371202421931921103275932, 4.80527792630616643529422370757, 6.15827007181814166542170597300, 7.14065158232685482207453373692, 7.72405983416698438555192785608, 8.493292356411723490582523298062, 10.08502891966320945913348904617, 10.87346241444923413655565456279, 11.37701627675583626168566167010