L(s) = 1 | + (0.640 − 0.465i)2-s + (0.309 + 0.951i)3-s + (−0.424 + 1.30i)4-s + (−2.72 − 1.98i)5-s + (0.640 + 0.465i)6-s + (−0.780 + 2.40i)7-s + (0.825 + 2.54i)8-s + (−0.809 + 0.587i)9-s − 2.67·10-s − 1.37·12-s + (−4.72 + 3.43i)13-s + (0.618 + 1.90i)14-s + (1.04 − 3.20i)15-s + (−0.507 − 0.368i)16-s + (2.16 + 1.57i)17-s + (−0.244 + 0.753i)18-s + ⋯ |
L(s) = 1 | + (0.453 − 0.329i)2-s + (0.178 + 0.549i)3-s + (−0.212 + 0.652i)4-s + (−1.22 − 0.886i)5-s + (0.261 + 0.190i)6-s + (−0.294 + 0.907i)7-s + (0.291 + 0.898i)8-s + (−0.269 + 0.195i)9-s − 0.844·10-s − 0.396·12-s + (−1.31 + 0.952i)13-s + (0.165 + 0.508i)14-s + (0.269 − 0.828i)15-s + (−0.126 − 0.0922i)16-s + (0.524 + 0.380i)17-s + (−0.0577 + 0.177i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.469 - 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.469 - 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.487257 + 0.811327i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.487257 + 0.811327i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (-0.640 + 0.465i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (2.72 + 1.98i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.780 - 2.40i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (4.72 - 3.43i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.16 - 1.57i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.290 - 0.893i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 2T + 23T^{2} \) |
| 29 | \( 1 + (-0.244 + 0.753i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (1.31 - 0.956i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.54 + 4.75i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.36 - 10.3i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 6.63T + 43T^{2} \) |
| 47 | \( 1 + (3.93 + 12.1i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.33 + 2.41i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (1.85 - 5.70i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-4.84 - 3.51i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 1.11T + 67T^{2} \) |
| 71 | \( 1 + (-8.69 - 6.31i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (2.82 - 8.70i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-3.32 + 2.41i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (1.52 + 1.10i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 0.627T + 89T^{2} \) |
| 97 | \( 1 + (8.48 - 6.16i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97663768300446330777269044560, −11.21211595636438214027286984362, −9.700030715122904142628911612950, −8.887116730131215245537041386624, −8.185337135395066024267705511938, −7.25923895911084520143787519428, −5.42890037863529505318734439049, −4.54837480578173902220939230639, −3.78545087316832722549747445997, −2.53898598041433881755967970756,
0.54342189078466628748981980560, 2.93766257978848011739561374825, 4.02232239845444830468545885196, 5.20228016391967731989204452068, 6.53300201701359643232738048421, 7.36017471726892485910620323785, 7.75294038368010207311574088057, 9.408715212549200981601070532859, 10.36844518623831580701042809717, 11.03572820982431825611533999411