L(s) = 1 | + 2·3-s + 2·7-s + 6·11-s + 2·13-s + 6·17-s + 4·19-s + 4·21-s + 6·23-s − 7·25-s − 2·27-s − 6·29-s − 8·31-s + 12·33-s − 2·37-s + 4·39-s − 14·43-s + 12·47-s + 3·49-s + 12·51-s − 6·53-s + 8·57-s − 20·61-s − 8·67-s + 12·69-s − 6·71-s − 8·73-s − 14·75-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.755·7-s + 1.80·11-s + 0.554·13-s + 1.45·17-s + 0.917·19-s + 0.872·21-s + 1.25·23-s − 7/5·25-s − 0.384·27-s − 1.11·29-s − 1.43·31-s + 2.08·33-s − 0.328·37-s + 0.640·39-s − 2.13·43-s + 1.75·47-s + 3/7·49-s + 1.68·51-s − 0.824·53-s + 1.05·57-s − 2.56·61-s − 0.977·67-s + 1.44·69-s − 0.712·71-s − 0.936·73-s − 1.61·75-s + ⋯ |
Λ(s)=(=(132496s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(132496s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
132496
= 24⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
8.44805 |
Root analytic conductor: |
1.70486 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 132496, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.929934528 |
L(21) |
≈ |
2.929934528 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)2 |
| 13 | C1 | (1−T)2 |
good | 3 | D4 | 1−2T+4T2−2pT3+p2T4 |
| 5 | C22 | 1+7T2+p2T4 |
| 11 | D4 | 1−6T+28T2−6pT3+p2T4 |
| 17 | D4 | 1−6T+16T2−6pT3+p2T4 |
| 19 | D4 | 1−4T+15T2−4pT3+p2T4 |
| 23 | C2 | (1−3T+pT2)2 |
| 29 | D4 | 1+6T+55T2+6pT3+p2T4 |
| 31 | D4 | 1+8T+51T2+8pT3+p2T4 |
| 37 | D4 | 1+2T+48T2+2pT3+p2T4 |
| 41 | C22 | 1+70T2+p2T4 |
| 43 | C2 | (1+7T+pT2)2 |
| 47 | D4 | 1−12T+127T2−12pT3+p2T4 |
| 53 | D4 | 1+6T+67T2+6pT3+p2T4 |
| 59 | C22 | 1+10T2+p2T4 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | D4 | 1+8T+42T2+8pT3+p2T4 |
| 71 | D4 | 1+6T+148T2+6pT3+p2T4 |
| 73 | D4 | 1+8T+135T2+8pT3+p2T4 |
| 79 | D4 | 1+2T+51T2+2pT3+p2T4 |
| 83 | D4 | 1+12T+175T2+12pT3+p2T4 |
| 89 | D4 | 1−12T+187T2−12pT3+p2T4 |
| 97 | D4 | 1−16T+231T2−16pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.55354777303285183537828862048, −11.48162942371729126931923445671, −10.62562328018689743867872336853, −10.36084466657607284142720822721, −9.427953620658775691068582805548, −9.343634114620225412128553460420, −8.919002538328781227320795980179, −8.561716837758046088552720669195, −7.80985016415399555533128753352, −7.60300856211437116905583953285, −7.14403758966548007283223252676, −6.39449945158992490277324879979, −5.73070678677033449952453341354, −5.44610844428662567205651774747, −4.58578199167383713369794242349, −3.90423520744475782645598411607, −3.35473243646736378058596595982, −3.08037979132238109847459385699, −1.76859295600357545086886342204, −1.40394088187422053685394686066,
1.40394088187422053685394686066, 1.76859295600357545086886342204, 3.08037979132238109847459385699, 3.35473243646736378058596595982, 3.90423520744475782645598411607, 4.58578199167383713369794242349, 5.44610844428662567205651774747, 5.73070678677033449952453341354, 6.39449945158992490277324879979, 7.14403758966548007283223252676, 7.60300856211437116905583953285, 7.80985016415399555533128753352, 8.561716837758046088552720669195, 8.919002538328781227320795980179, 9.343634114620225412128553460420, 9.427953620658775691068582805548, 10.36084466657607284142720822721, 10.62562328018689743867872336853, 11.48162942371729126931923445671, 11.55354777303285183537828862048