L(s) = 1 | − 3-s + 6·5-s + 2·7-s + 3·9-s − 9·11-s − 6·15-s − 4·17-s − 11·19-s − 2·21-s − 4·23-s + 9·25-s − 2·27-s − 3·29-s − 16·31-s + 9·33-s + 12·35-s − 4·37-s + 10·41-s + 43-s + 18·45-s + 32·47-s + 49-s + 4·51-s − 54·55-s + 11·57-s + 4·59-s + 6·63-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 2.68·5-s + 0.755·7-s + 9-s − 2.71·11-s − 1.54·15-s − 0.970·17-s − 2.52·19-s − 0.436·21-s − 0.834·23-s + 9/5·25-s − 0.384·27-s − 0.557·29-s − 2.87·31-s + 1.56·33-s + 2.02·35-s − 0.657·37-s + 1.56·41-s + 0.152·43-s + 2.68·45-s + 4.66·47-s + 1/7·49-s + 0.560·51-s − 7.28·55-s + 1.45·57-s + 0.520·59-s + 0.755·63-s + ⋯ |
Λ(s)=(=((28⋅74⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((28⋅74⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅74⋅134
|
Sign: |
1
|
Analytic conductor: |
71.3697 |
Root analytic conductor: |
1.70486 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅74⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.554051670 |
L(21) |
≈ |
1.554051670 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C2 | (1−T+T2)2 |
| 13 | C22 | 1+pT2+p2T4 |
good | 3 | D4×C2 | 1+T−2T2−pT3−pT4−p2T5−2p2T6+p3T7+p4T8 |
| 5 | D4 | (1−3T+9T2−3pT3+p2T4)2 |
| 11 | D4×C2 | 1+9T+42T2+153T3+509T4+153pT5+42p2T6+9p3T7+p4T8 |
| 17 | D4×C2 | 1+4T−9T2−36T3+64T4−36pT5−9p2T6+4p3T7+p4T8 |
| 19 | D4×C2 | 1+11T+56T2+297T3+1565T4+297pT5+56p2T6+11p3T7+p4T8 |
| 23 | C22 | (1+2T−19T2+2pT3+p2T4)2 |
| 29 | D4×C2 | 1+3T−48T2−3T3+2147T4−3pT5−48p2T6+3p3T7+p4T8 |
| 31 | D4 | (1+8T+65T2+8pT3+p2T4)2 |
| 37 | D4×C2 | 1+4T−10T2−192T3−1285T4−192pT5−10p2T6+4p3T7+p4T8 |
| 41 | D4×C2 | 1−10T+6T2−120T3+3055T4−120pT5+6p2T6−10p3T7+p4T8 |
| 43 | D4×C2 | 1−T−56T2+29T3+1357T4+29pT5−56p2T6−p3T7+p4T8 |
| 47 | D4 | (1−16T+145T2−16pT3+p2T4)2 |
| 53 | C22 | (1−11T2+p2T4)2 |
| 59 | D4×C2 | 1−4T−93T2+36T3+7456T4+36pT5−93p2T6−4p3T7+p4T8 |
| 61 | C22×C22 | (1−24T+253T2−24pT3+p2T4)(1+24T+253T2+24pT3+p2T4) |
| 67 | C22 | (1+13T+102T2+13pT3+p2T4)2 |
| 71 | D4×C2 | 1+2T−22T2−232T3−4649T4−232pT5−22p2T6+2p3T7+p4T8 |
| 73 | D4 | (1−8T+110T2−8pT3+p2T4)2 |
| 79 | C2 | (1−8T+pT2)4 |
| 83 | D4 | (1+16T+217T2+16pT3+p2T4)2 |
| 89 | D4×C2 | 1+21T+182T2+1701T3+19911T4+1701pT5+182p2T6+21p3T7+p4T8 |
| 97 | D4×C2 | 1−23T+232T2−2369T3+27487T4−2369pT5+232p2T6−23p3T7+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.093613534311314808538507129134, −7.998800979577138175609824982962, −7.928344581250233956817722093157, −7.38596674438009953330486377799, −7.25038928674439170479713036974, −7.17992736912262435092148485977, −6.77196669989586514359521555106, −6.26535634696070366813830564331, −6.15004011573173469883792758699, −5.85481695330638953558994276287, −5.65703401036892100952047137196, −5.56754909329035572350907897989, −5.42725490490203668547434590180, −4.97625393284363821588813098299, −4.58464912842067791282364016506, −4.38344948311692887120068685202, −4.08775994471865909359428653116, −3.84243154353666024426038462535, −3.24183421362289111243489981232, −2.45436803452976693604073378195, −2.42955462695472090292290956267, −2.15891319285075305321793199793, −1.87620254324778795540896787179, −1.70663876683441375589242825840, −0.46584609507010885795392899502,
0.46584609507010885795392899502, 1.70663876683441375589242825840, 1.87620254324778795540896787179, 2.15891319285075305321793199793, 2.42955462695472090292290956267, 2.45436803452976693604073378195, 3.24183421362289111243489981232, 3.84243154353666024426038462535, 4.08775994471865909359428653116, 4.38344948311692887120068685202, 4.58464912842067791282364016506, 4.97625393284363821588813098299, 5.42725490490203668547434590180, 5.56754909329035572350907897989, 5.65703401036892100952047137196, 5.85481695330638953558994276287, 6.15004011573173469883792758699, 6.26535634696070366813830564331, 6.77196669989586514359521555106, 7.17992736912262435092148485977, 7.25038928674439170479713036974, 7.38596674438009953330486377799, 7.928344581250233956817722093157, 7.998800979577138175609824982962, 8.093613534311314808538507129134