L(s) = 1 | + (0.651 + 1.12i)3-s + 3.30·5-s + (0.5 − 0.866i)7-s + (0.651 − 1.12i)9-s + (−1.34 − 2.33i)11-s + (1.80 − 3.12i)13-s + (2.15 + 3.72i)15-s + (−2.80 + 4.85i)17-s + (−3.65 + 6.32i)19-s + 1.30·21-s + (−1 − 1.73i)23-s + 5.90·25-s + 5.60·27-s + (−1.65 − 2.86i)29-s − 7.60·31-s + ⋯ |
L(s) = 1 | + (0.376 + 0.651i)3-s + 1.47·5-s + (0.188 − 0.327i)7-s + (0.217 − 0.376i)9-s + (−0.406 − 0.704i)11-s + (0.499 − 0.866i)13-s + (0.555 + 0.962i)15-s + (−0.679 + 1.17i)17-s + (−0.837 + 1.45i)19-s + 0.284·21-s + (−0.208 − 0.361i)23-s + 1.18·25-s + 1.07·27-s + (−0.306 − 0.531i)29-s − 1.36·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87154 + 0.252500i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87154 + 0.252500i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-1.80 + 3.12i)T \) |
good | 3 | \( 1 + (-0.651 - 1.12i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 3.30T + 5T^{2} \) |
| 11 | \( 1 + (1.34 + 2.33i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.80 - 4.85i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.65 - 6.32i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1 + 1.73i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.65 + 2.86i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 7.60T + 31T^{2} \) |
| 37 | \( 1 + (-2.60 - 4.51i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.30 - 7.45i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.45 - 4.25i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 4.39T + 47T^{2} \) |
| 53 | \( 1 + 10.8T + 53T^{2} \) |
| 59 | \( 1 + (0.802 - 1.39i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.60 + 6.24i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.5 + 11.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.90 - 10.2i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 3.21T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 11.6T + 83T^{2} \) |
| 89 | \( 1 + (7.95 + 13.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.45 + 14.6i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.05674326327765276513777601910, −10.36973136255884811855218918198, −9.802451245183555581019388913908, −8.773312102873286037005101642550, −7.998800979577138175609824982962, −6.26535634696070366813830564331, −5.85481695330638953558994276287, −4.38344948311692887120068685202, −3.24183421362289111243489981232, −1.70663876683441375589242825840,
1.87620254324778795540896787179, 2.45436803452976693604073378195, 4.58464912842067791282364016506, 5.56754909329035572350907897989, 6.77196669989586514359521555106, 7.38596674438009953330486377799, 8.944072970333037794852033398344, 9.237574453228264165104829861674, 10.47980634173440490488121171393, 11.28228913789705753615892666988