L(s) = 1 | + (0.651 + 1.12i)3-s + 3.30·5-s + (0.5 − 0.866i)7-s + (0.651 − 1.12i)9-s + (−1.34 − 2.33i)11-s + (1.80 − 3.12i)13-s + (2.15 + 3.72i)15-s + (−2.80 + 4.85i)17-s + (−3.65 + 6.32i)19-s + 1.30·21-s + (−1 − 1.73i)23-s + 5.90·25-s + 5.60·27-s + (−1.65 − 2.86i)29-s − 7.60·31-s + ⋯ |
L(s) = 1 | + (0.376 + 0.651i)3-s + 1.47·5-s + (0.188 − 0.327i)7-s + (0.217 − 0.376i)9-s + (−0.406 − 0.704i)11-s + (0.499 − 0.866i)13-s + (0.555 + 0.962i)15-s + (−0.679 + 1.17i)17-s + (−0.837 + 1.45i)19-s + 0.284·21-s + (−0.208 − 0.361i)23-s + 1.18·25-s + 1.07·27-s + (−0.306 − 0.531i)29-s − 1.36·31-s + ⋯ |
Λ(s)=(=(364s/2ΓC(s)L(s)(0.964−0.265i)Λ(2−s)
Λ(s)=(=(364s/2ΓC(s+1/2)L(s)(0.964−0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
364
= 22⋅7⋅13
|
Sign: |
0.964−0.265i
|
Analytic conductor: |
2.90655 |
Root analytic conductor: |
1.70486 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ364(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 364, ( :1/2), 0.964−0.265i)
|
Particular Values
L(1) |
≈ |
1.87154+0.252500i |
L(21) |
≈ |
1.87154+0.252500i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.5+0.866i)T |
| 13 | 1+(−1.80+3.12i)T |
good | 3 | 1+(−0.651−1.12i)T+(−1.5+2.59i)T2 |
| 5 | 1−3.30T+5T2 |
| 11 | 1+(1.34+2.33i)T+(−5.5+9.52i)T2 |
| 17 | 1+(2.80−4.85i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.65−6.32i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1+1.73i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.65+2.86i)T+(−14.5+25.1i)T2 |
| 31 | 1+7.60T+31T2 |
| 37 | 1+(−2.60−4.51i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−4.30−7.45i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.45−4.25i)T+(−21.5−37.2i)T2 |
| 47 | 1−4.39T+47T2 |
| 53 | 1+10.8T+53T2 |
| 59 | 1+(0.802−1.39i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.60+6.24i)T+(−30.5−52.8i)T2 |
| 67 | 1+(6.5+11.2i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5.90−10.2i)T+(−35.5−61.4i)T2 |
| 73 | 1+3.21T+73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1+11.6T+83T2 |
| 89 | 1+(7.95+13.7i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−8.45+14.6i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.05674326327765276513777601910, −10.36973136255884811855218918198, −9.802451245183555581019388913908, −8.773312102873286037005101642550, −7.998800979577138175609824982962, −6.26535634696070366813830564331, −5.85481695330638953558994276287, −4.38344948311692887120068685202, −3.24183421362289111243489981232, −1.70663876683441375589242825840,
1.87620254324778795540896787179, 2.45436803452976693604073378195, 4.58464912842067791282364016506, 5.56754909329035572350907897989, 6.77196669989586514359521555106, 7.38596674438009953330486377799, 8.944072970333037794852033398344, 9.237574453228264165104829861674, 10.47980634173440490488121171393, 11.28228913789705753615892666988