L(s) = 1 | + (−0.888 + 1.53i)3-s + 3.82i·5-s + (−0.866 + 0.5i)7-s + (−0.0783 − 0.135i)9-s + (−3.74 − 2.16i)11-s + (−0.930 − 3.48i)13-s + (−5.89 − 3.40i)15-s + (1.45 + 2.52i)17-s + (4.72 − 2.72i)19-s − 1.77i·21-s + (−0.307 + 0.531i)23-s − 9.65·25-s − 5.05·27-s + (−4.62 + 8.01i)29-s + 5.30i·31-s + ⋯ |
L(s) = 1 | + (−0.512 + 0.888i)3-s + 1.71i·5-s + (−0.327 + 0.188i)7-s + (−0.0261 − 0.0452i)9-s + (−1.12 − 0.652i)11-s + (−0.258 − 0.966i)13-s + (−1.52 − 0.878i)15-s + (0.353 + 0.612i)17-s + (1.08 − 0.626i)19-s − 0.387i·21-s + (−0.0640 + 0.110i)23-s − 1.93·25-s − 0.972·27-s + (−0.859 + 1.48i)29-s + 0.953i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 - 0.247i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.968 - 0.247i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.100807 + 0.802975i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.100807 + 0.802975i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (0.930 + 3.48i)T \) |
good | 3 | \( 1 + (0.888 - 1.53i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 3.82iT - 5T^{2} \) |
| 11 | \( 1 + (3.74 + 2.16i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.45 - 2.52i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.72 + 2.72i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.307 - 0.531i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.62 - 8.01i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.30iT - 31T^{2} \) |
| 37 | \( 1 + (0.974 + 0.562i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-10.4 - 6.01i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.641 - 1.11i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 5.68iT - 47T^{2} \) |
| 53 | \( 1 + 3.96T + 53T^{2} \) |
| 59 | \( 1 + (6.68 - 3.85i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.17 - 12.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.468 - 0.270i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.96 + 4.60i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 7.36iT - 73T^{2} \) |
| 79 | \( 1 - 0.331T + 79T^{2} \) |
| 83 | \( 1 - 16.6iT - 83T^{2} \) |
| 89 | \( 1 + (-2.55 - 1.47i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.36 + 4.82i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.40052290442522041131849763258, −10.67733549842854904604161840450, −10.41156167140864396637728205269, −9.443655186998453973670996462282, −7.914214564899512005451310169447, −7.13697622873416781205482161970, −5.86702885474462720782009423184, −5.19214722502258749934648609852, −3.50185041604711151370773670927, −2.78996180662873795073372542301,
0.57612086924706609804743883379, 1.98825808549093292114532682479, 4.13085900920106347679584761838, 5.18528876908070036755889214502, 6.03323074727835598177216618952, 7.42376276737744644668533207862, 7.897919884940108151936021964574, 9.394433986692652157610156202158, 9.712459435104048457494736237226, 11.38031282462232941162189149744