L(s) = 1 | + (−0.888 + 1.53i)3-s + 3.82i·5-s + (−0.866 + 0.5i)7-s + (−0.0783 − 0.135i)9-s + (−3.74 − 2.16i)11-s + (−0.930 − 3.48i)13-s + (−5.89 − 3.40i)15-s + (1.45 + 2.52i)17-s + (4.72 − 2.72i)19-s − 1.77i·21-s + (−0.307 + 0.531i)23-s − 9.65·25-s − 5.05·27-s + (−4.62 + 8.01i)29-s + 5.30i·31-s + ⋯ |
L(s) = 1 | + (−0.512 + 0.888i)3-s + 1.71i·5-s + (−0.327 + 0.188i)7-s + (−0.0261 − 0.0452i)9-s + (−1.12 − 0.652i)11-s + (−0.258 − 0.966i)13-s + (−1.52 − 0.878i)15-s + (0.353 + 0.612i)17-s + (1.08 − 0.626i)19-s − 0.387i·21-s + (−0.0640 + 0.110i)23-s − 1.93·25-s − 0.972·27-s + (−0.859 + 1.48i)29-s + 0.953i·31-s + ⋯ |
Λ(s)=(=(364s/2ΓC(s)L(s)(−0.968−0.247i)Λ(2−s)
Λ(s)=(=(364s/2ΓC(s+1/2)L(s)(−0.968−0.247i)Λ(1−s)
Degree: |
2 |
Conductor: |
364
= 22⋅7⋅13
|
Sign: |
−0.968−0.247i
|
Analytic conductor: |
2.90655 |
Root analytic conductor: |
1.70486 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ364(225,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 364, ( :1/2), −0.968−0.247i)
|
Particular Values
L(1) |
≈ |
0.100807+0.802975i |
L(21) |
≈ |
0.100807+0.802975i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.866−0.5i)T |
| 13 | 1+(0.930+3.48i)T |
good | 3 | 1+(0.888−1.53i)T+(−1.5−2.59i)T2 |
| 5 | 1−3.82iT−5T2 |
| 11 | 1+(3.74+2.16i)T+(5.5+9.52i)T2 |
| 17 | 1+(−1.45−2.52i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−4.72+2.72i)T+(9.5−16.4i)T2 |
| 23 | 1+(0.307−0.531i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.62−8.01i)T+(−14.5−25.1i)T2 |
| 31 | 1−5.30iT−31T2 |
| 37 | 1+(0.974+0.562i)T+(18.5+32.0i)T2 |
| 41 | 1+(−10.4−6.01i)T+(20.5+35.5i)T2 |
| 43 | 1+(−0.641−1.11i)T+(−21.5+37.2i)T2 |
| 47 | 1+5.68iT−47T2 |
| 53 | 1+3.96T+53T2 |
| 59 | 1+(6.68−3.85i)T+(29.5−51.0i)T2 |
| 61 | 1+(−7.17−12.4i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.468−0.270i)T+(33.5+58.0i)T2 |
| 71 | 1+(−7.96+4.60i)T+(35.5−61.4i)T2 |
| 73 | 1+7.36iT−73T2 |
| 79 | 1−0.331T+79T2 |
| 83 | 1−16.6iT−83T2 |
| 89 | 1+(−2.55−1.47i)T+(44.5+77.0i)T2 |
| 97 | 1+(−8.36+4.82i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.40052290442522041131849763258, −10.67733549842854904604161840450, −10.41156167140864396637728205269, −9.443655186998453973670996462282, −7.914214564899512005451310169447, −7.13697622873416781205482161970, −5.86702885474462720782009423184, −5.19214722502258749934648609852, −3.50185041604711151370773670927, −2.78996180662873795073372542301,
0.57612086924706609804743883379, 1.98825808549093292114532682479, 4.13085900920106347679584761838, 5.18528876908070036755889214502, 6.03323074727835598177216618952, 7.42376276737744644668533207862, 7.897919884940108151936021964574, 9.394433986692652157610156202158, 9.712459435104048457494736237226, 11.38031282462232941162189149744