L(s) = 1 | + (−0.895 + 1.09i)2-s + (1.32 + 2.29i)3-s + (−0.395 − 1.96i)4-s − i·5-s + (−3.69 − 0.604i)6-s + (2.29 + 1.32i)7-s + (2.49 + 1.32i)8-s + (−2 + 3.46i)9-s + (1.09 + 0.895i)10-s + (3.96 − 3.49i)12-s + (−2.59 + 2.5i)13-s + (−3.49 + 1.32i)14-s + (2.29 − 1.32i)15-s + (−3.68 + 1.55i)16-s + (3.46 + 2i)17-s + (−1.99 − 5.29i)18-s + ⋯ |
L(s) = 1 | + (−0.633 + 0.773i)2-s + (0.763 + 1.32i)3-s + (−0.197 − 0.980i)4-s − 0.447i·5-s + (−1.50 − 0.246i)6-s + (0.866 + 0.499i)7-s + (0.883 + 0.467i)8-s + (−0.666 + 1.15i)9-s + (0.346 + 0.283i)10-s + (1.14 − 1.01i)12-s + (−0.720 + 0.693i)13-s + (−0.935 + 0.353i)14-s + (0.591 − 0.341i)15-s + (−0.921 + 0.387i)16-s + (0.840 + 0.485i)17-s + (−0.471 − 1.24i)18-s + ⋯ |
Λ(s)=(=(364s/2ΓC(s)L(s)(−0.651−0.758i)Λ(2−s)
Λ(s)=(=(364s/2ΓC(s+1/2)L(s)(−0.651−0.758i)Λ(1−s)
Degree: |
2 |
Conductor: |
364
= 22⋅7⋅13
|
Sign: |
−0.651−0.758i
|
Analytic conductor: |
2.90655 |
Root analytic conductor: |
1.70486 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ364(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 364, ( :1/2), −0.651−0.758i)
|
Particular Values
L(1) |
≈ |
0.535753+1.16681i |
L(21) |
≈ |
0.535753+1.16681i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.895−1.09i)T |
| 7 | 1+(−2.29−1.32i)T |
| 13 | 1+(2.59−2.5i)T |
good | 3 | 1+(−1.32−2.29i)T+(−1.5+2.59i)T2 |
| 5 | 1+iT−5T2 |
| 11 | 1+(5.5−9.52i)T2 |
| 17 | 1+(−3.46−2i)T+(8.5+14.7i)T2 |
| 19 | 1+(2.64−4.58i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.29+1.32i)T+(11.5−19.9i)T2 |
| 29 | 1+(4+6.92i)T+(−14.5+25.1i)T2 |
| 31 | 1+5.29T+31T2 |
| 37 | 1+(2+3.46i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.73+i)T+(20.5−35.5i)T2 |
| 43 | 1+(4.58+2.64i)T+(21.5+37.2i)T2 |
| 47 | 1+47T2 |
| 53 | 1−12T+53T2 |
| 59 | 1+(−3.96+6.87i)T+(−29.5−51.0i)T2 |
| 61 | 1+(0.866+0.5i)T+(30.5+52.8i)T2 |
| 67 | 1+(−4.58+2.64i)T+(33.5−58.0i)T2 |
| 71 | 1+(2.29+1.32i)T+(35.5+61.4i)T2 |
| 73 | 1−10iT−73T2 |
| 79 | 1+5.29iT−79T2 |
| 83 | 1+15.8T+83T2 |
| 89 | 1+(−12.1+7i)T+(44.5−77.0i)T2 |
| 97 | 1+(12.1+7i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42180610048890283325792608418, −10.41490456810268182670816466536, −9.734432401310432928587534122716, −8.849779599998073160209682922103, −8.387706154426143758811677830004, −7.36437196545003431162610087590, −5.75475778695229415010168222526, −4.90517566859179913132916526640, −3.98141717784742200464360186786, −2.03183250527285891168741080489,
1.09820828921063432562835813670, 2.37201366860471064872016034342, 3.32494784240088333673747369785, 5.01383766193584606159292121362, 7.13195149262260718434757404505, 7.26482277096407286438863798177, 8.291560863073082427760567637642, 9.052770554970227153527011323210, 10.30071346821393827917605279210, 11.08970099581568772037501425188