L(s) = 1 | + (−0.895 + 1.09i)2-s + (1.32 + 2.29i)3-s + (−0.395 − 1.96i)4-s − i·5-s + (−3.69 − 0.604i)6-s + (2.29 + 1.32i)7-s + (2.49 + 1.32i)8-s + (−2 + 3.46i)9-s + (1.09 + 0.895i)10-s + (3.96 − 3.49i)12-s + (−2.59 + 2.5i)13-s + (−3.49 + 1.32i)14-s + (2.29 − 1.32i)15-s + (−3.68 + 1.55i)16-s + (3.46 + 2i)17-s + (−1.99 − 5.29i)18-s + ⋯ |
L(s) = 1 | + (−0.633 + 0.773i)2-s + (0.763 + 1.32i)3-s + (−0.197 − 0.980i)4-s − 0.447i·5-s + (−1.50 − 0.246i)6-s + (0.866 + 0.499i)7-s + (0.883 + 0.467i)8-s + (−0.666 + 1.15i)9-s + (0.346 + 0.283i)10-s + (1.14 − 1.01i)12-s + (−0.720 + 0.693i)13-s + (−0.935 + 0.353i)14-s + (0.591 − 0.341i)15-s + (−0.921 + 0.387i)16-s + (0.840 + 0.485i)17-s + (−0.471 − 1.24i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 364 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.651 - 0.758i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.535753 + 1.16681i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.535753 + 1.16681i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.895 - 1.09i)T \) |
| 7 | \( 1 + (-2.29 - 1.32i)T \) |
| 13 | \( 1 + (2.59 - 2.5i)T \) |
good | 3 | \( 1 + (-1.32 - 2.29i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + iT - 5T^{2} \) |
| 11 | \( 1 + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.46 - 2i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.64 - 4.58i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.29 + 1.32i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4 + 6.92i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 5.29T + 31T^{2} \) |
| 37 | \( 1 + (2 + 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.73 + i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.58 + 2.64i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 12T + 53T^{2} \) |
| 59 | \( 1 + (-3.96 + 6.87i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.866 + 0.5i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.58 + 2.64i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.29 + 1.32i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 10iT - 73T^{2} \) |
| 79 | \( 1 + 5.29iT - 79T^{2} \) |
| 83 | \( 1 + 15.8T + 83T^{2} \) |
| 89 | \( 1 + (-12.1 + 7i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (12.1 + 7i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42180610048890283325792608418, −10.41490456810268182670816466536, −9.734432401310432928587534122716, −8.849779599998073160209682922103, −8.387706154426143758811677830004, −7.36437196545003431162610087590, −5.75475778695229415010168222526, −4.90517566859179913132916526640, −3.98141717784742200464360186786, −2.03183250527285891168741080489,
1.09820828921063432562835813670, 2.37201366860471064872016034342, 3.32494784240088333673747369785, 5.01383766193584606159292121362, 7.13195149262260718434757404505, 7.26482277096407286438863798177, 8.291560863073082427760567637642, 9.052770554970227153527011323210, 10.30071346821393827917605279210, 11.08970099581568772037501425188