L(s) = 1 | + (−0.5 + 0.866i)3-s + 1.73i·7-s + (−0.499 − 0.866i)9-s + (−1.5 + 0.866i)13-s − 19-s + (−1.49 − 0.866i)21-s + (−0.5 − 0.866i)25-s + 0.999·27-s − 31-s − 1.73i·37-s − 1.73i·39-s + (1.5 + 0.866i)43-s − 1.99·49-s + (0.5 − 0.866i)57-s + (0.5 + 0.866i)61-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + 1.73i·7-s + (−0.499 − 0.866i)9-s + (−1.5 + 0.866i)13-s − 19-s + (−1.49 − 0.866i)21-s + (−0.5 − 0.866i)25-s + 0.999·27-s − 31-s − 1.73i·37-s − 1.73i·39-s + (1.5 + 0.866i)43-s − 1.99·49-s + (0.5 − 0.866i)57-s + (0.5 + 0.866i)61-s + ⋯ |
Λ(s)=(=(3648s/2ΓC(s)L(s)(−0.813+0.582i)Λ(1−s)
Λ(s)=(=(3648s/2ΓC(s)L(s)(−0.813+0.582i)Λ(1−s)
Degree: |
2 |
Conductor: |
3648
= 26⋅3⋅19
|
Sign: |
−0.813+0.582i
|
Analytic conductor: |
1.82058 |
Root analytic conductor: |
1.34929 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3648(2687,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3648, ( :0), −0.813+0.582i)
|
Particular Values
L(21) |
≈ |
0.3553039815 |
L(21) |
≈ |
0.3553039815 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.5−0.866i)T |
| 19 | 1+T |
good | 5 | 1+(0.5+0.866i)T2 |
| 7 | 1−1.73iT−T2 |
| 11 | 1+T2 |
| 13 | 1+(1.5−0.866i)T+(0.5−0.866i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T2 |
| 31 | 1+T+T2 |
| 37 | 1+1.73iT−T2 |
| 41 | 1+(−0.5−0.866i)T2 |
| 43 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.153289124038776760781314716877, −8.768516581872050499622148219865, −7.74295182740970361937226180150, −6.76450412791501293378726954671, −5.95010641354179295038178320084, −5.47493592198504784068653974027, −4.63266400249068039195423003787, −3.98676955490813340979976280926, −2.66495388798721724046987483415, −2.14300487645527394671849981937,
0.21034675185649874579726952458, 1.41093571231103312256063047175, 2.50607419701215875357456209617, 3.60205342973356493811357115760, 4.56998241593209598537165650183, 5.24019071252309200767201497345, 6.17758762655377163928460390401, 6.98118951329108797336250656207, 7.50564768964677266216720850221, 7.86175620137304296342017657210