L(s) = 1 | + (−0.5 + 0.866i)3-s + 1.73i·7-s + (−0.499 − 0.866i)9-s + (−1.5 + 0.866i)13-s − 19-s + (−1.49 − 0.866i)21-s + (−0.5 − 0.866i)25-s + 0.999·27-s − 31-s − 1.73i·37-s − 1.73i·39-s + (1.5 + 0.866i)43-s − 1.99·49-s + (0.5 − 0.866i)57-s + (0.5 + 0.866i)61-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + 1.73i·7-s + (−0.499 − 0.866i)9-s + (−1.5 + 0.866i)13-s − 19-s + (−1.49 − 0.866i)21-s + (−0.5 − 0.866i)25-s + 0.999·27-s − 31-s − 1.73i·37-s − 1.73i·39-s + (1.5 + 0.866i)43-s − 1.99·49-s + (0.5 − 0.866i)57-s + (0.5 + 0.866i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3553039815\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3553039815\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 - 1.73iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T + T^{2} \) |
| 37 | \( 1 + 1.73iT - T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.153289124038776760781314716877, −8.768516581872050499622148219865, −7.74295182740970361937226180150, −6.76450412791501293378726954671, −5.95010641354179295038178320084, −5.47493592198504784068653974027, −4.63266400249068039195423003787, −3.98676955490813340979976280926, −2.66495388798721724046987483415, −2.14300487645527394671849981937,
0.21034675185649874579726952458, 1.41093571231103312256063047175, 2.50607419701215875357456209617, 3.60205342973356493811357115760, 4.56998241593209598537165650183, 5.24019071252309200767201497345, 6.17758762655377163928460390401, 6.98118951329108797336250656207, 7.50564768964677266216720850221, 7.86175620137304296342017657210