Properties

Label 2-3648-228.179-c0-0-0
Degree $2$
Conductor $3648$
Sign $-0.813 + 0.582i$
Analytic cond. $1.82058$
Root an. cond. $1.34929$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)3-s + 1.73i·7-s + (−0.499 − 0.866i)9-s + (−1.5 + 0.866i)13-s − 19-s + (−1.49 − 0.866i)21-s + (−0.5 − 0.866i)25-s + 0.999·27-s − 31-s − 1.73i·37-s − 1.73i·39-s + (1.5 + 0.866i)43-s − 1.99·49-s + (0.5 − 0.866i)57-s + (0.5 + 0.866i)61-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)3-s + 1.73i·7-s + (−0.499 − 0.866i)9-s + (−1.5 + 0.866i)13-s − 19-s + (−1.49 − 0.866i)21-s + (−0.5 − 0.866i)25-s + 0.999·27-s − 31-s − 1.73i·37-s − 1.73i·39-s + (1.5 + 0.866i)43-s − 1.99·49-s + (0.5 − 0.866i)57-s + (0.5 + 0.866i)61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3648\)    =    \(2^{6} \cdot 3 \cdot 19\)
Sign: $-0.813 + 0.582i$
Analytic conductor: \(1.82058\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3648} (2687, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3648,\ (\ :0),\ -0.813 + 0.582i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3553039815\)
\(L(\frac12)\) \(\approx\) \(0.3553039815\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.5 - 0.866i)T \)
19 \( 1 + T \)
good5 \( 1 + (0.5 + 0.866i)T^{2} \)
7 \( 1 - 1.73iT - T^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \)
17 \( 1 + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.5 + 0.866i)T^{2} \)
29 \( 1 + (-0.5 + 0.866i)T^{2} \)
31 \( 1 + T + T^{2} \)
37 \( 1 + 1.73iT - T^{2} \)
41 \( 1 + (-0.5 - 0.866i)T^{2} \)
43 \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \)
47 \( 1 + (-0.5 + 0.866i)T^{2} \)
53 \( 1 + (-0.5 + 0.866i)T^{2} \)
59 \( 1 + (0.5 + 0.866i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + (0.5 + 0.866i)T^{2} \)
73 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
79 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + (-0.5 + 0.866i)T^{2} \)
97 \( 1 + (0.5 + 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.153289124038776760781314716877, −8.768516581872050499622148219865, −7.74295182740970361937226180150, −6.76450412791501293378726954671, −5.95010641354179295038178320084, −5.47493592198504784068653974027, −4.63266400249068039195423003787, −3.98676955490813340979976280926, −2.66495388798721724046987483415, −2.14300487645527394671849981937, 0.21034675185649874579726952458, 1.41093571231103312256063047175, 2.50607419701215875357456209617, 3.60205342973356493811357115760, 4.56998241593209598537165650183, 5.24019071252309200767201497345, 6.17758762655377163928460390401, 6.98118951329108797336250656207, 7.50564768964677266216720850221, 7.86175620137304296342017657210

Graph of the $Z$-function along the critical line