L(s) = 1 | − 2·4-s + 9-s + 16-s − 2·36-s + 2·64-s − 4·79-s + 4·109-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | − 2·4-s + 9-s + 16-s − 2·36-s + 2·64-s − 4·79-s + 4·109-s − 2·121-s + 127-s + 131-s + 137-s + 139-s + 144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 4·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
Λ(s)=(=((34⋅58⋅78)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((34⋅58⋅78)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅58⋅78
|
Sign: |
1
|
Analytic conductor: |
11.3150 |
Root analytic conductor: |
1.35427 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅58⋅78, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.6302967171 |
L(21) |
≈ |
0.6302967171 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1−T2+T4 |
| 5 | | 1 |
| 7 | | 1 |
good | 2 | C2 | (1−T+T2)2(1+T+T2)2 |
| 11 | C2 | (1−T+T2)2(1+T+T2)2 |
| 13 | C2 | (1+T2)4 |
| 17 | C22 | (1−T2+T4)2 |
| 19 | C22 | (1−T2+T4)2 |
| 23 | C2 | (1−T+T2)2(1+T+T2)2 |
| 29 | C1×C1 | (1−T)4(1+T)4 |
| 31 | C22 | (1−T2+T4)2 |
| 37 | C22 | (1−T2+T4)2 |
| 41 | C1×C1 | (1−T)4(1+T)4 |
| 43 | C2 | (1+T2)4 |
| 47 | C22 | (1−T2+T4)2 |
| 53 | C2 | (1−T+T2)2(1+T+T2)2 |
| 59 | C2 | (1−T+T2)2(1+T+T2)2 |
| 61 | C22 | (1−T2+T4)2 |
| 67 | C22 | (1−T2+T4)2 |
| 71 | C1×C1 | (1−T)4(1+T)4 |
| 73 | C22 | (1−T2+T4)2 |
| 79 | C2 | (1+T+T2)4 |
| 83 | C2 | (1+T2)4 |
| 89 | C2 | (1−T+T2)2(1+T+T2)2 |
| 97 | C2 | (1+T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.32181177316750204734320762764, −5.90451412257362294042994342512, −5.79672324053475848840061591292, −5.49494456103752256754041698531, −5.49483563171297673495130064646, −5.11463551762738628865296784253, −4.92543970175945260740955435605, −4.77580967830460677458052028817, −4.67969709517985621770026115620, −4.36988783741455222517272017635, −4.15967593893003488904474067750, −4.14509172404348767709188493748, −3.85837619821449973749196039083, −3.73752328725421659897846026453, −3.43273239751555506297278398309, −2.96176616992779338001518320308, −2.92387641823813717208499251324, −2.86706591115734972858905404922, −2.30439102216675380266862881058, −2.01247329896486790040110599672, −1.83573580210360279505733256308, −1.58854842116750095714050760257, −1.11557228854828374353590489623, −0.892901649175799724836015149968, −0.37646360222908505327163146353,
0.37646360222908505327163146353, 0.892901649175799724836015149968, 1.11557228854828374353590489623, 1.58854842116750095714050760257, 1.83573580210360279505733256308, 2.01247329896486790040110599672, 2.30439102216675380266862881058, 2.86706591115734972858905404922, 2.92387641823813717208499251324, 2.96176616992779338001518320308, 3.43273239751555506297278398309, 3.73752328725421659897846026453, 3.85837619821449973749196039083, 4.14509172404348767709188493748, 4.15967593893003488904474067750, 4.36988783741455222517272017635, 4.67969709517985621770026115620, 4.77580967830460677458052028817, 4.92543970175945260740955435605, 5.11463551762738628865296784253, 5.49483563171297673495130064646, 5.49494456103752256754041698531, 5.79672324053475848840061591292, 5.90451412257362294042994342512, 6.32181177316750204734320762764