L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.5 − 0.866i)4-s + (0.499 − 0.866i)9-s + (0.866 + 0.499i)12-s + (−0.499 + 0.866i)16-s + (−1.73 + i)17-s + 0.999i·27-s − 0.999·36-s + (1.73 + i)47-s − 0.999i·48-s + (0.999 − 1.73i)51-s + 0.999·64-s + (1.73 + 0.999i)68-s + (−1 + 1.73i)79-s + (−0.5 − 0.866i)81-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.5 − 0.866i)4-s + (0.499 − 0.866i)9-s + (0.866 + 0.499i)12-s + (−0.499 + 0.866i)16-s + (−1.73 + i)17-s + 0.999i·27-s − 0.999·36-s + (1.73 + i)47-s − 0.999i·48-s + (0.999 − 1.73i)51-s + 0.999·64-s + (1.73 + 0.999i)68-s + (−1 + 1.73i)79-s + (−0.5 − 0.866i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.126 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.126 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5057883487\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5057883487\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - 2iT - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.014305596728288564997868550168, −8.400282079088037896568499781843, −7.15992871073387845969347451222, −6.40488010956900813157396670089, −5.90451412257362294042994342512, −5.11463551762738628865296784253, −4.36988783741455222517272017635, −3.85837619821449973749196039083, −2.30439102216675380266862881058, −1.11557228854828374353590489623,
0.37646360222908505327163146353, 2.01247329896486790040110599672, 2.92387641823813717208499251324, 4.15967593893003488904474067750, 4.67969709517985621770026115620, 5.49483563171297673495130064646, 6.43902700047500532244408601960, 7.15416042612149016755022297401, 7.58511405441797821968322754305, 8.608612589234536758683088139332