L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.5 − 0.866i)4-s + (0.499 − 0.866i)9-s + (0.866 + 0.499i)12-s + (−0.499 + 0.866i)16-s + (−1.73 + i)17-s + 0.999i·27-s − 0.999·36-s + (1.73 + i)47-s − 0.999i·48-s + (0.999 − 1.73i)51-s + 0.999·64-s + (1.73 + 0.999i)68-s + (−1 + 1.73i)79-s + (−0.5 − 0.866i)81-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)3-s + (−0.5 − 0.866i)4-s + (0.499 − 0.866i)9-s + (0.866 + 0.499i)12-s + (−0.499 + 0.866i)16-s + (−1.73 + i)17-s + 0.999i·27-s − 0.999·36-s + (1.73 + i)47-s − 0.999i·48-s + (0.999 − 1.73i)51-s + 0.999·64-s + (1.73 + 0.999i)68-s + (−1 + 1.73i)79-s + (−0.5 − 0.866i)81-s + ⋯ |
Λ(s)=(=(3675s/2ΓC(s)L(s)(0.126−0.991i)Λ(1−s)
Λ(s)=(=(3675s/2ΓC(s)L(s)(0.126−0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
3675
= 3⋅52⋅72
|
Sign: |
0.126−0.991i
|
Analytic conductor: |
1.83406 |
Root analytic conductor: |
1.35427 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3675(1451,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3675, ( :0), 0.126−0.991i)
|
Particular Values
L(21) |
≈ |
0.5057883487 |
L(21) |
≈ |
0.5057883487 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.866−0.5i)T |
| 5 | 1 |
| 7 | 1 |
good | 2 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+T2 |
| 17 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+(−0.5−0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.5+0.866i)T2 |
| 79 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 83 | 1−2iT−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.014305596728288564997868550168, −8.400282079088037896568499781843, −7.15992871073387845969347451222, −6.40488010956900813157396670089, −5.90451412257362294042994342512, −5.11463551762738628865296784253, −4.36988783741455222517272017635, −3.85837619821449973749196039083, −2.30439102216675380266862881058, −1.11557228854828374353590489623,
0.37646360222908505327163146353, 2.01247329896486790040110599672, 2.92387641823813717208499251324, 4.15967593893003488904474067750, 4.67969709517985621770026115620, 5.49483563171297673495130064646, 6.43902700047500532244408601960, 7.15416042612149016755022297401, 7.58511405441797821968322754305, 8.608612589234536758683088139332