Properties

Label 2-368-1.1-c1-0-2
Degree $2$
Conductor $368$
Sign $1$
Analytic cond. $2.93849$
Root an. cond. $1.71420$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 4·7-s − 2·9-s + 2·11-s + 7·13-s − 2·15-s − 4·17-s + 6·19-s + 4·21-s + 23-s − 25-s − 5·27-s + 5·29-s − 3·31-s + 2·33-s − 8·35-s + 2·37-s + 7·39-s − 9·41-s − 8·43-s + 4·45-s + 47-s + 9·49-s − 4·51-s − 6·53-s − 4·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1.51·7-s − 2/3·9-s + 0.603·11-s + 1.94·13-s − 0.516·15-s − 0.970·17-s + 1.37·19-s + 0.872·21-s + 0.208·23-s − 1/5·25-s − 0.962·27-s + 0.928·29-s − 0.538·31-s + 0.348·33-s − 1.35·35-s + 0.328·37-s + 1.12·39-s − 1.40·41-s − 1.21·43-s + 0.596·45-s + 0.145·47-s + 9/7·49-s − 0.560·51-s − 0.824·53-s − 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(368\)    =    \(2^{4} \cdot 23\)
Sign: $1$
Analytic conductor: \(2.93849\)
Root analytic conductor: \(1.71420\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 368,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.650535973\)
\(L(\frac12)\) \(\approx\) \(1.650535973\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 7 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 13 T + p T^{2} \)
73 \( 1 + 3 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42430187210008812945880438281, −10.86848721677029243426021484334, −9.254384528219192456945387156073, −8.329813902784183039465685329406, −8.114123921695714436821685463650, −6.78162209635099188733794145481, −5.45154558642829652829288266961, −4.23360018955841801936580827802, −3.28529126527781208900067174562, −1.50730411079549891694764955601, 1.50730411079549891694764955601, 3.28529126527781208900067174562, 4.23360018955841801936580827802, 5.45154558642829652829288266961, 6.78162209635099188733794145481, 8.114123921695714436821685463650, 8.329813902784183039465685329406, 9.254384528219192456945387156073, 10.86848721677029243426021484334, 11.42430187210008812945880438281

Graph of the $Z$-function along the critical line