L(s) = 1 | + (−1.36 − 0.366i)2-s + (−0.633 + 0.633i)3-s + (1.73 + i)4-s + (−1 − i)5-s + (1.09 − 0.633i)6-s + 2.73i·7-s + (−1.99 − 2i)8-s + 2.19i·9-s + (1 + 1.73i)10-s + (−4.46 − 4.46i)11-s + (−1.73 + 0.464i)12-s + (2.09 − 2.09i)13-s + (1 − 3.73i)14-s + 1.26·15-s + (1.99 + 3.46i)16-s − 1.26·17-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (−0.366 + 0.366i)3-s + (0.866 + 0.5i)4-s + (−0.447 − 0.447i)5-s + (0.448 − 0.258i)6-s + 1.03i·7-s + (−0.707 − 0.707i)8-s + 0.732i·9-s + (0.316 + 0.547i)10-s + (−1.34 − 1.34i)11-s + (−0.499 + 0.133i)12-s + (0.581 − 0.581i)13-s + (0.267 − 0.997i)14-s + 0.327·15-s + (0.499 + 0.866i)16-s − 0.307·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(−0.991+0.130i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(−0.991+0.130i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
−0.991+0.130i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 368, ( :1/2), −0.991+0.130i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.36+0.366i)T |
| 23 | 1+iT |
good | 3 | 1+(0.633−0.633i)T−3iT2 |
| 5 | 1+(1+i)T+5iT2 |
| 7 | 1−2.73iT−7T2 |
| 11 | 1+(4.46+4.46i)T+11iT2 |
| 13 | 1+(−2.09+2.09i)T−13iT2 |
| 17 | 1+1.26T+17T2 |
| 19 | 1+(2.73−2.73i)T−19iT2 |
| 29 | 1+(3.09−3.09i)T−29iT2 |
| 31 | 1+10.4T+31T2 |
| 37 | 1+(7.73+7.73i)T+37iT2 |
| 41 | 1−3iT−41T2 |
| 43 | 1+(−1.46−1.46i)T+43iT2 |
| 47 | 1+11.7T+47T2 |
| 53 | 1+(−0.196−0.196i)T+53iT2 |
| 59 | 1+(−10.4−10.4i)T+59iT2 |
| 61 | 1+(−2+2i)T−61iT2 |
| 67 | 1+(−0.464+0.464i)T−67iT2 |
| 71 | 1−12.4iT−71T2 |
| 73 | 1+7iT−73T2 |
| 79 | 1−2.92T+79T2 |
| 83 | 1+(−6.66+6.66i)T−83iT2 |
| 89 | 1+10.3iT−89T2 |
| 97 | 1−12.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85307897105858936636323630191, −10.30177987036213550623997860827, −8.849662191488841616490449213421, −8.424292298328366660082524853685, −7.61348576143554426044131285646, −5.96464113274735076046139986862, −5.30200746853965537319985886805, −3.55087930145378813392451357044, −2.23242126919152895191462677501, 0,
1.88483135490906404425815753519, 3.65429588468744074944968733620, 5.19849533992952265533046248259, 6.68716037223693216751768882518, 7.09042418687421295851126375208, 7.890758913483899289665927792645, 9.136755604008863120337862852930, 10.05456586925779227816698797200, 10.89277660402553851334524050135