L(s) = 1 | + (−1.40 − 0.111i)2-s + (−1.70 − 1.70i)3-s + (1.97 + 0.313i)4-s + (−2.61 + 2.61i)5-s + (2.21 + 2.59i)6-s + 1.66i·7-s + (−2.74 − 0.661i)8-s + 2.81i·9-s + (3.97 − 3.39i)10-s + (3.35 − 3.35i)11-s + (−2.83 − 3.90i)12-s + (1.50 + 1.50i)13-s + (0.184 − 2.34i)14-s + 8.91·15-s + (3.80 + 1.23i)16-s − 0.812·17-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0786i)2-s + (−0.984 − 0.984i)3-s + (0.987 + 0.156i)4-s + (−1.16 + 1.16i)5-s + (0.904 + 1.05i)6-s + 0.628i·7-s + (−0.972 − 0.233i)8-s + 0.939i·9-s + (1.25 − 1.07i)10-s + (1.01 − 1.01i)11-s + (−0.818 − 1.12i)12-s + (0.418 + 0.418i)13-s + (0.0493 − 0.626i)14-s + 2.30·15-s + (0.950 + 0.309i)16-s − 0.196·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(0.0777+0.996i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(0.0777+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
0.0777+0.996i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), 0.0777+0.996i)
|
Particular Values
L(1) |
≈ |
0.294467−0.272392i |
L(21) |
≈ |
0.294467−0.272392i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.40+0.111i)T |
| 23 | 1+iT |
good | 3 | 1+(1.70+1.70i)T+3iT2 |
| 5 | 1+(2.61−2.61i)T−5iT2 |
| 7 | 1−1.66iT−7T2 |
| 11 | 1+(−3.35+3.35i)T−11iT2 |
| 13 | 1+(−1.50−1.50i)T+13iT2 |
| 17 | 1+0.812T+17T2 |
| 19 | 1+(3.81+3.81i)T+19iT2 |
| 29 | 1+(7.12+7.12i)T+29iT2 |
| 31 | 1−10.7T+31T2 |
| 37 | 1+(−3.80+3.80i)T−37iT2 |
| 41 | 1+0.765iT−41T2 |
| 43 | 1+(−3.75+3.75i)T−43iT2 |
| 47 | 1−2.18T+47T2 |
| 53 | 1+(1.48−1.48i)T−53iT2 |
| 59 | 1+(−9.46+9.46i)T−59iT2 |
| 61 | 1+(−0.442−0.442i)T+61iT2 |
| 67 | 1+(7.97+7.97i)T+67iT2 |
| 71 | 1+2.88iT−71T2 |
| 73 | 1+7.28iT−73T2 |
| 79 | 1−1.36T+79T2 |
| 83 | 1+(−6.09−6.09i)T+83iT2 |
| 89 | 1−4.98iT−89T2 |
| 97 | 1+7.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36023339320395373039222929496, −10.71211308878071921448422920217, −9.198611047181941922084593091216, −8.260359593971973369233927935158, −7.34442536780783345119192970329, −6.45553625620473697462845150933, −6.12398739869297156697227726859, −3.83606431292845019629782321294, −2.40091883385074974794375894198, −0.51860020902536311059119138090,
1.12437948643308533121759092715, 3.88829739888502651118569408199, 4.56243470660021899235010289080, 5.83364991249140065131747039028, 7.04586739252778877340792431526, 8.063351235401827858795710567235, 8.933457649980123186614866089630, 9.873064775063412052567195751739, 10.61597914844362072463904116888, 11.51932899380008917920709361566