L(s) = 1 | + (1.29 + 0.578i)2-s + (1.73 − 1.73i)3-s + (1.33 + 1.49i)4-s + (−1.86 − 1.86i)5-s + (3.23 − 1.23i)6-s − 1.07i·7-s + (0.855 + 2.69i)8-s − 2.98i·9-s + (−1.33 − 3.49i)10-s + (0.551 + 0.551i)11-s + (4.88 + 0.278i)12-s + (0.244 − 0.244i)13-s + (0.621 − 1.38i)14-s − 6.46·15-s + (−0.454 + 3.97i)16-s + 3.95·17-s + ⋯ |
L(s) = 1 | + (0.912 + 0.408i)2-s + (0.998 − 0.998i)3-s + (0.665 + 0.746i)4-s + (−0.835 − 0.835i)5-s + (1.31 − 0.503i)6-s − 0.406i·7-s + (0.302 + 0.953i)8-s − 0.995i·9-s + (−0.421 − 1.10i)10-s + (0.166 + 0.166i)11-s + (1.41 + 0.0803i)12-s + (0.0676 − 0.0676i)13-s + (0.166 − 0.370i)14-s − 1.66·15-s + (−0.113 + 0.993i)16-s + 0.958·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(0.874+0.485i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(0.874+0.485i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
0.874+0.485i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(277,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), 0.874+0.485i)
|
Particular Values
L(1) |
≈ |
2.61906−0.677949i |
L(21) |
≈ |
2.61906−0.677949i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.29−0.578i)T |
| 23 | 1−iT |
good | 3 | 1+(−1.73+1.73i)T−3iT2 |
| 5 | 1+(1.86+1.86i)T+5iT2 |
| 7 | 1+1.07iT−7T2 |
| 11 | 1+(−0.551−0.551i)T+11iT2 |
| 13 | 1+(−0.244+0.244i)T−13iT2 |
| 17 | 1−3.95T+17T2 |
| 19 | 1+(2.75−2.75i)T−19iT2 |
| 29 | 1+(4.25−4.25i)T−29iT2 |
| 31 | 1+2.33T+31T2 |
| 37 | 1+(3.31+3.31i)T+37iT2 |
| 41 | 1−12.3iT−41T2 |
| 43 | 1+(8.16+8.16i)T+43iT2 |
| 47 | 1−4.08T+47T2 |
| 53 | 1+(0.106+0.106i)T+53iT2 |
| 59 | 1+(−4.32−4.32i)T+59iT2 |
| 61 | 1+(6.39−6.39i)T−61iT2 |
| 67 | 1+(−3.60+3.60i)T−67iT2 |
| 71 | 1+10.4iT−71T2 |
| 73 | 1+6.16iT−73T2 |
| 79 | 1−1.42T+79T2 |
| 83 | 1+(−4.07+4.07i)T−83iT2 |
| 89 | 1−9.40iT−89T2 |
| 97 | 1−3.27T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.93529625786628450076115924882, −10.62435062296244368061705622020, −9.006729456468286289542942586833, −8.146776695650649158322614312436, −7.63128574783214032735802959407, −6.78810429184572225064337265093, −5.42531955924970885872087722242, −4.15538647809956733942896790948, −3.25722020181861591151610196326, −1.66368358065988289861878393599,
2.46409238528425893484450480780, 3.45202737014210836014899898999, 4.04828664753916538799321924118, 5.30803494397197178751393828404, 6.63984815454228368133162742588, 7.72911690080378929714869152598, 8.865295899851648455190663147565, 9.846524486673896234426364847271, 10.65520891812388269672909710833, 11.43192635605095202040183707277