L(s) = 1 | + (−1.27 + 0.602i)2-s + (0.203 + 0.203i)3-s + (1.27 − 1.54i)4-s + (1.88 − 1.88i)5-s + (−0.383 − 0.137i)6-s + 4.71i·7-s + (−0.702 + 2.73i)8-s − 2.91i·9-s + (−1.27 + 3.54i)10-s + (−0.944 + 0.944i)11-s + (0.573 − 0.0543i)12-s + (1.72 + 1.72i)13-s + (−2.83 − 6.03i)14-s + 0.766·15-s + (−0.751 − 3.92i)16-s + 7.35·17-s + ⋯ |
L(s) = 1 | + (−0.904 + 0.425i)2-s + (0.117 + 0.117i)3-s + (0.637 − 0.770i)4-s + (0.841 − 0.841i)5-s + (−0.156 − 0.0562i)6-s + 1.78i·7-s + (−0.248 + 0.968i)8-s − 0.972i·9-s + (−0.402 + 1.11i)10-s + (−0.284 + 0.284i)11-s + (0.165 − 0.0156i)12-s + (0.478 + 0.478i)13-s + (−0.758 − 1.61i)14-s + 0.197·15-s + (−0.187 − 0.982i)16-s + 1.78·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06407 + 0.318567i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06407 + 0.318567i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.27 - 0.602i)T \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (-0.203 - 0.203i)T + 3iT^{2} \) |
| 5 | \( 1 + (-1.88 + 1.88i)T - 5iT^{2} \) |
| 7 | \( 1 - 4.71iT - 7T^{2} \) |
| 11 | \( 1 + (0.944 - 0.944i)T - 11iT^{2} \) |
| 13 | \( 1 + (-1.72 - 1.72i)T + 13iT^{2} \) |
| 17 | \( 1 - 7.35T + 17T^{2} \) |
| 19 | \( 1 + (1.62 + 1.62i)T + 19iT^{2} \) |
| 29 | \( 1 + (1.16 + 1.16i)T + 29iT^{2} \) |
| 31 | \( 1 - 9.98T + 31T^{2} \) |
| 37 | \( 1 + (3.26 - 3.26i)T - 37iT^{2} \) |
| 41 | \( 1 - 5.41iT - 41T^{2} \) |
| 43 | \( 1 + (5.65 - 5.65i)T - 43iT^{2} \) |
| 47 | \( 1 - 1.93T + 47T^{2} \) |
| 53 | \( 1 + (-7.79 + 7.79i)T - 53iT^{2} \) |
| 59 | \( 1 + (-6.83 + 6.83i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1.70 - 1.70i)T + 61iT^{2} \) |
| 67 | \( 1 + (9.77 + 9.77i)T + 67iT^{2} \) |
| 71 | \( 1 - 0.932iT - 71T^{2} \) |
| 73 | \( 1 - 3.71iT - 73T^{2} \) |
| 79 | \( 1 + 10.7T + 79T^{2} \) |
| 83 | \( 1 + (4.25 + 4.25i)T + 83iT^{2} \) |
| 89 | \( 1 + 0.581iT - 89T^{2} \) |
| 97 | \( 1 + 9.37T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65988317452632353201690123643, −9.990792647802070196752771965341, −9.583818140395529701128172353729, −8.733601900967680798051110093630, −8.215672520435895241346336199859, −6.55130571583917741727416437485, −5.83230248902318969004168828300, −5.03670642108971078905327971635, −2.81082021004663622344326400844, −1.44394112667617593768511346955,
1.24750137140108481252106384860, 2.76229636406048027532304626742, 3.86457519927869012694671018940, 5.70205442743092412033065746288, 6.94959718508441058541689989599, 7.61031468710999675672671492461, 8.415476074694278076018699298310, 10.01985772414975325018763903018, 10.36692158061112043235457888494, 10.74321091354257789681941862757