L(s) = 1 | + (−1.27 + 0.602i)2-s + (0.203 + 0.203i)3-s + (1.27 − 1.54i)4-s + (1.88 − 1.88i)5-s + (−0.383 − 0.137i)6-s + 4.71i·7-s + (−0.702 + 2.73i)8-s − 2.91i·9-s + (−1.27 + 3.54i)10-s + (−0.944 + 0.944i)11-s + (0.573 − 0.0543i)12-s + (1.72 + 1.72i)13-s + (−2.83 − 6.03i)14-s + 0.766·15-s + (−0.751 − 3.92i)16-s + 7.35·17-s + ⋯ |
L(s) = 1 | + (−0.904 + 0.425i)2-s + (0.117 + 0.117i)3-s + (0.637 − 0.770i)4-s + (0.841 − 0.841i)5-s + (−0.156 − 0.0562i)6-s + 1.78i·7-s + (−0.248 + 0.968i)8-s − 0.972i·9-s + (−0.402 + 1.11i)10-s + (−0.284 + 0.284i)11-s + (0.165 − 0.0156i)12-s + (0.478 + 0.478i)13-s + (−0.758 − 1.61i)14-s + 0.197·15-s + (−0.187 − 0.982i)16-s + 1.78·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(0.835−0.549i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(0.835−0.549i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
0.835−0.549i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), 0.835−0.549i)
|
Particular Values
L(1) |
≈ |
1.06407+0.318567i |
L(21) |
≈ |
1.06407+0.318567i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.27−0.602i)T |
| 23 | 1+iT |
good | 3 | 1+(−0.203−0.203i)T+3iT2 |
| 5 | 1+(−1.88+1.88i)T−5iT2 |
| 7 | 1−4.71iT−7T2 |
| 11 | 1+(0.944−0.944i)T−11iT2 |
| 13 | 1+(−1.72−1.72i)T+13iT2 |
| 17 | 1−7.35T+17T2 |
| 19 | 1+(1.62+1.62i)T+19iT2 |
| 29 | 1+(1.16+1.16i)T+29iT2 |
| 31 | 1−9.98T+31T2 |
| 37 | 1+(3.26−3.26i)T−37iT2 |
| 41 | 1−5.41iT−41T2 |
| 43 | 1+(5.65−5.65i)T−43iT2 |
| 47 | 1−1.93T+47T2 |
| 53 | 1+(−7.79+7.79i)T−53iT2 |
| 59 | 1+(−6.83+6.83i)T−59iT2 |
| 61 | 1+(−1.70−1.70i)T+61iT2 |
| 67 | 1+(9.77+9.77i)T+67iT2 |
| 71 | 1−0.932iT−71T2 |
| 73 | 1−3.71iT−73T2 |
| 79 | 1+10.7T+79T2 |
| 83 | 1+(4.25+4.25i)T+83iT2 |
| 89 | 1+0.581iT−89T2 |
| 97 | 1+9.37T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.65988317452632353201690123643, −9.990792647802070196752771965341, −9.583818140395529701128172353729, −8.733601900967680798051110093630, −8.215672520435895241346336199859, −6.55130571583917741727416437485, −5.83230248902318969004168828300, −5.03670642108971078905327971635, −2.81082021004663622344326400844, −1.44394112667617593768511346955,
1.24750137140108481252106384860, 2.76229636406048027532304626742, 3.86457519927869012694671018940, 5.70205442743092412033065746288, 6.94959718508441058541689989599, 7.61031468710999675672671492461, 8.415476074694278076018699298310, 10.01985772414975325018763903018, 10.36692158061112043235457888494, 10.74321091354257789681941862757