L(s) = 1 | + (−0.741 − 1.20i)2-s + (1.96 + 1.96i)3-s + (−0.900 + 1.78i)4-s + (−0.463 + 0.463i)5-s + (0.908 − 3.81i)6-s + 1.33i·7-s + (2.81 − 0.238i)8-s + 4.69i·9-s + (0.900 + 0.214i)10-s + (−1.06 + 1.06i)11-s + (−5.26 + 1.73i)12-s + (−0.743 − 0.743i)13-s + (1.61 − 0.992i)14-s − 1.81·15-s + (−2.37 − 3.21i)16-s − 1.89·17-s + ⋯ |
L(s) = 1 | + (−0.524 − 0.851i)2-s + (1.13 + 1.13i)3-s + (−0.450 + 0.892i)4-s + (−0.207 + 0.207i)5-s + (0.370 − 1.55i)6-s + 0.506i·7-s + (0.996 − 0.0843i)8-s + 1.56i·9-s + (0.284 + 0.0678i)10-s + (−0.319 + 0.319i)11-s + (−1.52 + 0.500i)12-s + (−0.206 − 0.206i)13-s + (0.431 − 0.265i)14-s − 0.468·15-s + (−0.594 − 0.804i)16-s − 0.460·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.515 - 0.856i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.515 - 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13585 + 0.641968i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13585 + 0.641968i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.741 + 1.20i)T \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (-1.96 - 1.96i)T + 3iT^{2} \) |
| 5 | \( 1 + (0.463 - 0.463i)T - 5iT^{2} \) |
| 7 | \( 1 - 1.33iT - 7T^{2} \) |
| 11 | \( 1 + (1.06 - 1.06i)T - 11iT^{2} \) |
| 13 | \( 1 + (0.743 + 0.743i)T + 13iT^{2} \) |
| 17 | \( 1 + 1.89T + 17T^{2} \) |
| 19 | \( 1 + (-4.25 - 4.25i)T + 19iT^{2} \) |
| 29 | \( 1 + (2.48 + 2.48i)T + 29iT^{2} \) |
| 31 | \( 1 - 1.53T + 31T^{2} \) |
| 37 | \( 1 + (0.463 - 0.463i)T - 37iT^{2} \) |
| 41 | \( 1 - 1.58iT - 41T^{2} \) |
| 43 | \( 1 + (-2.95 + 2.95i)T - 43iT^{2} \) |
| 47 | \( 1 - 6.03T + 47T^{2} \) |
| 53 | \( 1 + (-7.20 + 7.20i)T - 53iT^{2} \) |
| 59 | \( 1 + (-9.14 + 9.14i)T - 59iT^{2} \) |
| 61 | \( 1 + (2.74 + 2.74i)T + 61iT^{2} \) |
| 67 | \( 1 + (0.407 + 0.407i)T + 67iT^{2} \) |
| 71 | \( 1 + 15.9iT - 71T^{2} \) |
| 73 | \( 1 - 6.53iT - 73T^{2} \) |
| 79 | \( 1 + 9.08T + 79T^{2} \) |
| 83 | \( 1 + (11.9 + 11.9i)T + 83iT^{2} \) |
| 89 | \( 1 - 11.9iT - 89T^{2} \) |
| 97 | \( 1 + 8.92T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33853755043458139779288064268, −10.36417996121122371142390291609, −9.745528094495017791755197166108, −9.015134756316643859837106046614, −8.201972016641441404492656845976, −7.36315320839416709862940117806, −5.29856743403655241437701460150, −4.10684804262063368598302028222, −3.24128829899481874042825773936, −2.22013890400501111066808199842,
0.989376765244284816075103307449, 2.59007737404211777848627304280, 4.26612886011434553147276122668, 5.72401332789039477256264373987, 7.12902295211146191500378819885, 7.29443617810433892491884802556, 8.437961348230923651974086311381, 8.939670132642160019238627108249, 10.00090594657659349151496040083, 11.17878466305453905424833225076