L(s) = 1 | + (−0.741 − 1.20i)2-s + (1.96 + 1.96i)3-s + (−0.900 + 1.78i)4-s + (−0.463 + 0.463i)5-s + (0.908 − 3.81i)6-s + 1.33i·7-s + (2.81 − 0.238i)8-s + 4.69i·9-s + (0.900 + 0.214i)10-s + (−1.06 + 1.06i)11-s + (−5.26 + 1.73i)12-s + (−0.743 − 0.743i)13-s + (1.61 − 0.992i)14-s − 1.81·15-s + (−2.37 − 3.21i)16-s − 1.89·17-s + ⋯ |
L(s) = 1 | + (−0.524 − 0.851i)2-s + (1.13 + 1.13i)3-s + (−0.450 + 0.892i)4-s + (−0.207 + 0.207i)5-s + (0.370 − 1.55i)6-s + 0.506i·7-s + (0.996 − 0.0843i)8-s + 1.56i·9-s + (0.284 + 0.0678i)10-s + (−0.319 + 0.319i)11-s + (−1.52 + 0.500i)12-s + (−0.206 − 0.206i)13-s + (0.431 − 0.265i)14-s − 0.468·15-s + (−0.594 − 0.804i)16-s − 0.460·17-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(0.515−0.856i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(0.515−0.856i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
0.515−0.856i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), 0.515−0.856i)
|
Particular Values
L(1) |
≈ |
1.13585+0.641968i |
L(21) |
≈ |
1.13585+0.641968i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.741+1.20i)T |
| 23 | 1+iT |
good | 3 | 1+(−1.96−1.96i)T+3iT2 |
| 5 | 1+(0.463−0.463i)T−5iT2 |
| 7 | 1−1.33iT−7T2 |
| 11 | 1+(1.06−1.06i)T−11iT2 |
| 13 | 1+(0.743+0.743i)T+13iT2 |
| 17 | 1+1.89T+17T2 |
| 19 | 1+(−4.25−4.25i)T+19iT2 |
| 29 | 1+(2.48+2.48i)T+29iT2 |
| 31 | 1−1.53T+31T2 |
| 37 | 1+(0.463−0.463i)T−37iT2 |
| 41 | 1−1.58iT−41T2 |
| 43 | 1+(−2.95+2.95i)T−43iT2 |
| 47 | 1−6.03T+47T2 |
| 53 | 1+(−7.20+7.20i)T−53iT2 |
| 59 | 1+(−9.14+9.14i)T−59iT2 |
| 61 | 1+(2.74+2.74i)T+61iT2 |
| 67 | 1+(0.407+0.407i)T+67iT2 |
| 71 | 1+15.9iT−71T2 |
| 73 | 1−6.53iT−73T2 |
| 79 | 1+9.08T+79T2 |
| 83 | 1+(11.9+11.9i)T+83iT2 |
| 89 | 1−11.9iT−89T2 |
| 97 | 1+8.92T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.33853755043458139779288064268, −10.36417996121122371142390291609, −9.745528094495017791755197166108, −9.015134756316643859837106046614, −8.201972016641441404492656845976, −7.36315320839416709862940117806, −5.29856743403655241437701460150, −4.10684804262063368598302028222, −3.24128829899481874042825773936, −2.22013890400501111066808199842,
0.989376765244284816075103307449, 2.59007737404211777848627304280, 4.26612886011434553147276122668, 5.72401332789039477256264373987, 7.12902295211146191500378819885, 7.29443617810433892491884802556, 8.437961348230923651974086311381, 8.939670132642160019238627108249, 10.00090594657659349151496040083, 11.17878466305453905424833225076