L(s) = 1 | + (−0.712 − 0.822i)3-s + (0.174 + 1.21i)5-s + (−0.260 + 0.570i)7-s + (0.258 − 1.79i)9-s + (5.65 + 1.65i)11-s + (−0.977 − 2.13i)13-s + (0.875 − 1.01i)15-s + (4.49 + 2.88i)17-s + (0.227 − 0.146i)19-s + (0.654 − 0.192i)21-s + (2.50 − 4.09i)23-s + (3.34 − 0.983i)25-s + (−4.40 + 2.83i)27-s + (−1.66 − 1.07i)29-s + (4.32 − 4.99i)31-s + ⋯ |
L(s) = 1 | + (−0.411 − 0.474i)3-s + (0.0782 + 0.543i)5-s + (−0.0984 + 0.215i)7-s + (0.0861 − 0.599i)9-s + (1.70 + 0.500i)11-s + (−0.270 − 0.593i)13-s + (0.226 − 0.260i)15-s + (1.08 + 0.700i)17-s + (0.0522 − 0.0336i)19-s + (0.142 − 0.0419i)21-s + (0.521 − 0.853i)23-s + (0.669 − 0.196i)25-s + (−0.848 + 0.545i)27-s + (−0.309 − 0.199i)29-s + (0.776 − 0.896i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.959 + 0.282i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.959 + 0.282i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.29094 - 0.185889i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29094 - 0.185889i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + (-2.50 + 4.09i)T \) |
good | 3 | \( 1 + (0.712 + 0.822i)T + (-0.426 + 2.96i)T^{2} \) |
| 5 | \( 1 + (-0.174 - 1.21i)T + (-4.79 + 1.40i)T^{2} \) |
| 7 | \( 1 + (0.260 - 0.570i)T + (-4.58 - 5.29i)T^{2} \) |
| 11 | \( 1 + (-5.65 - 1.65i)T + (9.25 + 5.94i)T^{2} \) |
| 13 | \( 1 + (0.977 + 2.13i)T + (-8.51 + 9.82i)T^{2} \) |
| 17 | \( 1 + (-4.49 - 2.88i)T + (7.06 + 15.4i)T^{2} \) |
| 19 | \( 1 + (-0.227 + 0.146i)T + (7.89 - 17.2i)T^{2} \) |
| 29 | \( 1 + (1.66 + 1.07i)T + (12.0 + 26.3i)T^{2} \) |
| 31 | \( 1 + (-4.32 + 4.99i)T + (-4.41 - 30.6i)T^{2} \) |
| 37 | \( 1 + (1.43 - 9.96i)T + (-35.5 - 10.4i)T^{2} \) |
| 41 | \( 1 + (1.53 + 10.7i)T + (-39.3 + 11.5i)T^{2} \) |
| 43 | \( 1 + (-3.01 - 3.47i)T + (-6.11 + 42.5i)T^{2} \) |
| 47 | \( 1 + 6.97T + 47T^{2} \) |
| 53 | \( 1 + (1.09 - 2.39i)T + (-34.7 - 40.0i)T^{2} \) |
| 59 | \( 1 + (0.685 + 1.50i)T + (-38.6 + 44.5i)T^{2} \) |
| 61 | \( 1 + (5.98 - 6.90i)T + (-8.68 - 60.3i)T^{2} \) |
| 67 | \( 1 + (5.94 - 1.74i)T + (56.3 - 36.2i)T^{2} \) |
| 71 | \( 1 + (8.69 - 2.55i)T + (59.7 - 38.3i)T^{2} \) |
| 73 | \( 1 + (4.99 - 3.21i)T + (30.3 - 66.4i)T^{2} \) |
| 79 | \( 1 + (-2.49 - 5.46i)T + (-51.7 + 59.7i)T^{2} \) |
| 83 | \( 1 + (0.277 - 1.93i)T + (-79.6 - 23.3i)T^{2} \) |
| 89 | \( 1 + (3.00 + 3.46i)T + (-12.6 + 88.0i)T^{2} \) |
| 97 | \( 1 + (1.44 + 10.0i)T + (-93.0 + 27.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59957639026940168641904849895, −10.42375711748637767921481714342, −9.616706910817128532749155334790, −8.626427521718114342472706027066, −7.34206862436637013194021893671, −6.55252325274564361544588103514, −5.85587173230390042555404601693, −4.29238279296566490149638968267, −3.05590850203942192924579865739, −1.26490196540121502458125533705,
1.35816200783005785764024973189, 3.42041762950278666091615937885, 4.58083112418508335612773906313, 5.44173338428150309921992917872, 6.62889195566904471457758530995, 7.65623640745457673955250682787, 8.965998184958868519142957635566, 9.508651600166605147461396559692, 10.56355734571462954338078777013, 11.53510845641149131638980594343