L(s) = 1 | + (−0.712 − 0.822i)3-s + (0.174 + 1.21i)5-s + (−0.260 + 0.570i)7-s + (0.258 − 1.79i)9-s + (5.65 + 1.65i)11-s + (−0.977 − 2.13i)13-s + (0.875 − 1.01i)15-s + (4.49 + 2.88i)17-s + (0.227 − 0.146i)19-s + (0.654 − 0.192i)21-s + (2.50 − 4.09i)23-s + (3.34 − 0.983i)25-s + (−4.40 + 2.83i)27-s + (−1.66 − 1.07i)29-s + (4.32 − 4.99i)31-s + ⋯ |
L(s) = 1 | + (−0.411 − 0.474i)3-s + (0.0782 + 0.543i)5-s + (−0.0984 + 0.215i)7-s + (0.0861 − 0.599i)9-s + (1.70 + 0.500i)11-s + (−0.270 − 0.593i)13-s + (0.226 − 0.260i)15-s + (1.08 + 0.700i)17-s + (0.0522 − 0.0336i)19-s + (0.142 − 0.0419i)21-s + (0.521 − 0.853i)23-s + (0.669 − 0.196i)25-s + (−0.848 + 0.545i)27-s + (−0.309 − 0.199i)29-s + (0.776 − 0.896i)31-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(0.959+0.282i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(0.959+0.282i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
0.959+0.282i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), 0.959+0.282i)
|
Particular Values
L(1) |
≈ |
1.29094−0.185889i |
L(21) |
≈ |
1.29094−0.185889i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+(−2.50+4.09i)T |
good | 3 | 1+(0.712+0.822i)T+(−0.426+2.96i)T2 |
| 5 | 1+(−0.174−1.21i)T+(−4.79+1.40i)T2 |
| 7 | 1+(0.260−0.570i)T+(−4.58−5.29i)T2 |
| 11 | 1+(−5.65−1.65i)T+(9.25+5.94i)T2 |
| 13 | 1+(0.977+2.13i)T+(−8.51+9.82i)T2 |
| 17 | 1+(−4.49−2.88i)T+(7.06+15.4i)T2 |
| 19 | 1+(−0.227+0.146i)T+(7.89−17.2i)T2 |
| 29 | 1+(1.66+1.07i)T+(12.0+26.3i)T2 |
| 31 | 1+(−4.32+4.99i)T+(−4.41−30.6i)T2 |
| 37 | 1+(1.43−9.96i)T+(−35.5−10.4i)T2 |
| 41 | 1+(1.53+10.7i)T+(−39.3+11.5i)T2 |
| 43 | 1+(−3.01−3.47i)T+(−6.11+42.5i)T2 |
| 47 | 1+6.97T+47T2 |
| 53 | 1+(1.09−2.39i)T+(−34.7−40.0i)T2 |
| 59 | 1+(0.685+1.50i)T+(−38.6+44.5i)T2 |
| 61 | 1+(5.98−6.90i)T+(−8.68−60.3i)T2 |
| 67 | 1+(5.94−1.74i)T+(56.3−36.2i)T2 |
| 71 | 1+(8.69−2.55i)T+(59.7−38.3i)T2 |
| 73 | 1+(4.99−3.21i)T+(30.3−66.4i)T2 |
| 79 | 1+(−2.49−5.46i)T+(−51.7+59.7i)T2 |
| 83 | 1+(0.277−1.93i)T+(−79.6−23.3i)T2 |
| 89 | 1+(3.00+3.46i)T+(−12.6+88.0i)T2 |
| 97 | 1+(1.44+10.0i)T+(−93.0+27.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59957639026940168641904849895, −10.42375711748637767921481714342, −9.616706910817128532749155334790, −8.626427521718114342472706027066, −7.34206862436637013194021893671, −6.55252325274564361544588103514, −5.85587173230390042555404601693, −4.29238279296566490149638968267, −3.05590850203942192924579865739, −1.26490196540121502458125533705,
1.35816200783005785764024973189, 3.42041762950278666091615937885, 4.58083112418508335612773906313, 5.44173338428150309921992917872, 6.62889195566904471457758530995, 7.65623640745457673955250682787, 8.965998184958868519142957635566, 9.508651600166605147461396559692, 10.56355734571462954338078777013, 11.53510845641149131638980594343