L(s) = 1 | + (1.24 + 1.56i)2-s + (−2.11 − 2.11i)3-s + (−0.879 + 3.90i)4-s + (0.661 − 5.94i)6-s + (−7.19 + 3.49i)8-s − 0.0498i·9-s + (10.1 − 6.39i)12-s + (−11.8 − 11.8i)13-s + (−14.4 − 6.86i)16-s + (0.0778 − 0.0622i)18-s − 23i·23-s + (22.6 + 7.81i)24-s − 25i·25-s + (3.71 − 33.3i)26-s + (−19.1 + 19.1i)27-s + ⋯ |
L(s) = 1 | + (0.624 + 0.780i)2-s + (−0.705 − 0.705i)3-s + (−0.219 + 0.975i)4-s + (0.110 − 0.991i)6-s + (−0.899 + 0.437i)8-s − 0.00553i·9-s + (0.842 − 0.532i)12-s + (−0.913 − 0.913i)13-s + (−0.903 − 0.429i)16-s + (0.00432 − 0.00345i)18-s − i·23-s + (0.942 + 0.325i)24-s − i·25-s + (0.142 − 1.28i)26-s + (−0.709 + 0.709i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0507 + 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0507 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.554106 - 0.582961i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.554106 - 0.582961i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.24 - 1.56i)T \) |
| 23 | \( 1 + 23iT \) |
good | 3 | \( 1 + (2.11 + 2.11i)T + 9iT^{2} \) |
| 5 | \( 1 + 25iT^{2} \) |
| 7 | \( 1 + 49T^{2} \) |
| 11 | \( 1 + 121iT^{2} \) |
| 13 | \( 1 + (11.8 + 11.8i)T + 169iT^{2} \) |
| 17 | \( 1 - 289T^{2} \) |
| 19 | \( 1 - 361iT^{2} \) |
| 29 | \( 1 + (21.7 + 21.7i)T + 841iT^{2} \) |
| 31 | \( 1 - 3.44T + 961T^{2} \) |
| 37 | \( 1 + 1.36e3iT^{2} \) |
| 41 | \( 1 + 66.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 1.84e3iT^{2} \) |
| 47 | \( 1 - 50.9T + 2.20e3T^{2} \) |
| 53 | \( 1 + 2.80e3iT^{2} \) |
| 59 | \( 1 + (70.5 - 70.5i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 - 3.72e3iT^{2} \) |
| 67 | \( 1 - 4.48e3iT^{2} \) |
| 71 | \( 1 - 130. iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 88.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 6.24e3T^{2} \) |
| 83 | \( 1 - 6.88e3iT^{2} \) |
| 89 | \( 1 + 7.92e3T^{2} \) |
| 97 | \( 1 - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27431360763821531926509632342, −10.07781113930151333652661359875, −8.822839752146689953847050168986, −7.76869733305295835790393048309, −7.02071768501229947927334468747, −6.09829037558915523082281883075, −5.33270386748275085769821046417, −4.11957924471756594231697674071, −2.60091657204977130269684176864, −0.30827892041494805292051942711,
1.81044175088037394601691822361, 3.37429575763216231617853773000, 4.58027407698311188987284926201, 5.20412508063396707564765378031, 6.26480297311700598796453440967, 7.53860239510071134982584409205, 9.241813686532896030332239227226, 9.735802794842078149434821268344, 10.77967632268631822879150049915, 11.36485956401885727521002166028