L(s) = 1 | − 1.61·3-s − 5-s − 0.618·7-s + 1.61·9-s − 1.61·11-s − 0.618·13-s + 1.61·15-s − 1.61·17-s + 0.618·19-s + 1.00·21-s − 23-s + 25-s − 27-s − 0.618·31-s + 2.61·33-s + 0.618·35-s + 1.00·39-s − 1.61·41-s − 1.61·45-s − 0.618·49-s + 2.61·51-s + 1.61·55-s − 1.00·57-s + 1.61·61-s − 1.00·63-s + 0.618·65-s + 1.61·69-s + ⋯ |
L(s) = 1 | − 1.61·3-s − 5-s − 0.618·7-s + 1.61·9-s − 1.61·11-s − 0.618·13-s + 1.61·15-s − 1.61·17-s + 0.618·19-s + 1.00·21-s − 23-s + 25-s − 27-s − 0.618·31-s + 2.61·33-s + 0.618·35-s + 1.00·39-s − 1.61·41-s − 1.61·45-s − 0.618·49-s + 2.61·51-s + 1.61·55-s − 1.00·57-s + 1.61·61-s − 1.00·63-s + 0.618·65-s + 1.61·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1777072238\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1777072238\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 23 | \( 1 + T \) |
good | 3 | \( 1 + 1.61T + T^{2} \) |
| 7 | \( 1 + 0.618T + T^{2} \) |
| 11 | \( 1 + 1.61T + T^{2} \) |
| 13 | \( 1 + 0.618T + T^{2} \) |
| 17 | \( 1 + 1.61T + T^{2} \) |
| 19 | \( 1 - 0.618T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + 0.618T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + 1.61T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - 1.61T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - 1.61T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + 1.61T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.557175145039695156976788060268, −7.82693565968870571939511305383, −7.02456307500285172411774986602, −6.59427273069639954116290501285, −5.58399467403044747481781105755, −5.02477271271878968307891602514, −4.36899492878551996592429286406, −3.34340160360658974772073744699, −2.19471880308865485776251519316, −0.36551028701962918915390568527,
0.36551028701962918915390568527, 2.19471880308865485776251519316, 3.34340160360658974772073744699, 4.36899492878551996592429286406, 5.02477271271878968307891602514, 5.58399467403044747481781105755, 6.59427273069639954116290501285, 7.02456307500285172411774986602, 7.82693565968870571939511305383, 8.557175145039695156976788060268