Properties

Label 2-3680-1.1-c1-0-15
Degree $2$
Conductor $3680$
Sign $1$
Analytic cond. $29.3849$
Root an. cond. $5.42078$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.34·3-s + 5-s + 1.34·7-s + 2.50·9-s − 2.34·11-s + 1.50·13-s − 2.34·15-s − 5.19·17-s − 1.50·19-s − 3.15·21-s − 23-s + 25-s + 1.15·27-s + 8.85·29-s − 2.65·31-s + 5.50·33-s + 1.34·35-s + 11.5·37-s − 3.53·39-s − 5.89·41-s + 4·43-s + 2.50·45-s − 12.3·47-s − 5.18·49-s + 12.1·51-s + 7.84·53-s − 2.34·55-s + ⋯
L(s)  = 1  − 1.35·3-s + 0.447·5-s + 0.508·7-s + 0.835·9-s − 0.707·11-s + 0.417·13-s − 0.605·15-s − 1.26·17-s − 0.345·19-s − 0.689·21-s − 0.208·23-s + 0.200·25-s + 0.223·27-s + 1.64·29-s − 0.476·31-s + 0.958·33-s + 0.227·35-s + 1.89·37-s − 0.565·39-s − 0.920·41-s + 0.609·43-s + 0.373·45-s − 1.80·47-s − 0.741·49-s + 1.70·51-s + 1.07·53-s − 0.316·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3680\)    =    \(2^{5} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(29.3849\)
Root analytic conductor: \(5.42078\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.044008289\)
\(L(\frac12)\) \(\approx\) \(1.044008289\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
23 \( 1 + T \)
good3 \( 1 + 2.34T + 3T^{2} \)
7 \( 1 - 1.34T + 7T^{2} \)
11 \( 1 + 2.34T + 11T^{2} \)
13 \( 1 - 1.50T + 13T^{2} \)
17 \( 1 + 5.19T + 17T^{2} \)
19 \( 1 + 1.50T + 19T^{2} \)
29 \( 1 - 8.85T + 29T^{2} \)
31 \( 1 + 2.65T + 31T^{2} \)
37 \( 1 - 11.5T + 37T^{2} \)
41 \( 1 + 5.89T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 12.3T + 47T^{2} \)
53 \( 1 - 7.84T + 53T^{2} \)
59 \( 1 + 10.5T + 59T^{2} \)
61 \( 1 - 12.0T + 61T^{2} \)
67 \( 1 + 9.84T + 67T^{2} \)
71 \( 1 - 12.2T + 71T^{2} \)
73 \( 1 + 0.692T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + 0.159T + 83T^{2} \)
89 \( 1 - 7.68T + 89T^{2} \)
97 \( 1 - 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.443956331261052416702500846484, −7.83405439170548594131247301250, −6.60216665030186922794469857021, −6.42794216033113550237698967893, −5.49767158267033251247739097082, −4.87156109678869337692858834663, −4.27205250326610831372463625089, −2.86149912523852990880460753249, −1.85124488882691768154566926698, −0.63627712865441610685739979158, 0.63627712865441610685739979158, 1.85124488882691768154566926698, 2.86149912523852990880460753249, 4.27205250326610831372463625089, 4.87156109678869337692858834663, 5.49767158267033251247739097082, 6.42794216033113550237698967893, 6.60216665030186922794469857021, 7.83405439170548594131247301250, 8.443956331261052416702500846484

Graph of the $Z$-function along the critical line