L(s) = 1 | − i·2-s − 2.72i·3-s − 4-s + (−1.42 − 1.72i)5-s − 2.72·6-s + 4.14i·7-s + i·8-s − 4.45·9-s + (−1.72 + 1.42i)10-s − 4.76·11-s + 2.72i·12-s − 3.91i·13-s + 4.14·14-s + (−4.71 + 3.88i)15-s + 16-s − 3.31i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.57i·3-s − 0.5·4-s + (−0.635 − 0.771i)5-s − 1.11·6-s + 1.56i·7-s + 0.353i·8-s − 1.48·9-s + (−0.545 + 0.449i)10-s − 1.43·11-s + 0.788i·12-s − 1.08i·13-s + 1.10·14-s + (−1.21 + 1.00i)15-s + 0.250·16-s − 0.804i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.635 - 0.771i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.635 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.278007 + 0.589096i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.278007 + 0.589096i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (1.42 + 1.72i)T \) |
| 37 | \( 1 + iT \) |
good | 3 | \( 1 + 2.72iT - 3T^{2} \) |
| 7 | \( 1 - 4.14iT - 7T^{2} \) |
| 11 | \( 1 + 4.76T + 11T^{2} \) |
| 13 | \( 1 + 3.91iT - 13T^{2} \) |
| 17 | \( 1 + 3.31iT - 17T^{2} \) |
| 19 | \( 1 - 1.85T + 19T^{2} \) |
| 23 | \( 1 + 1.54iT - 23T^{2} \) |
| 29 | \( 1 + 8.87T + 29T^{2} \) |
| 31 | \( 1 - 9.75T + 31T^{2} \) |
| 41 | \( 1 + 5.06T + 41T^{2} \) |
| 43 | \( 1 + 9.99iT - 43T^{2} \) |
| 47 | \( 1 + 4.82iT - 47T^{2} \) |
| 53 | \( 1 + 5.13iT - 53T^{2} \) |
| 59 | \( 1 - 1.05T + 59T^{2} \) |
| 61 | \( 1 + 4.14T + 61T^{2} \) |
| 67 | \( 1 + 1.00iT - 67T^{2} \) |
| 71 | \( 1 - 6.45T + 71T^{2} \) |
| 73 | \( 1 - 10.7iT - 73T^{2} \) |
| 79 | \( 1 - 1.19T + 79T^{2} \) |
| 83 | \( 1 - 10.6iT - 83T^{2} \) |
| 89 | \( 1 + 7.29T + 89T^{2} \) |
| 97 | \( 1 + 14.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27385290597049912506484471065, −9.877219962124118192842413110611, −8.616853468119460071405087650975, −8.178917193068714702186877004839, −7.29277915265731209765715638638, −5.67229176060720202403518309978, −5.15036458068803691678015627947, −3.03447413166692801916792642754, −2.12798534705374300661897601621, −0.42785923145299655776089429301,
3.28305222794189869118810119477, 4.15397684502326706821031253525, 4.84058939518166643161312483564, 6.27044265482744543734007670000, 7.42567522658600133985910479644, 8.068916918924450628884720247867, 9.426149915438756562736027514646, 10.25989179603639685955839769232, 10.71903331077717451307441586625, 11.55600511943335852781434535284