L(s) = 1 | + i·2-s + 2.72i·3-s − 4-s + (−1.42 + 1.72i)5-s − 2.72·6-s − 4.14i·7-s − i·8-s − 4.45·9-s + (−1.72 − 1.42i)10-s − 4.76·11-s − 2.72i·12-s + 3.91i·13-s + 4.14·14-s + (−4.71 − 3.88i)15-s + 16-s + 3.31i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.57i·3-s − 0.5·4-s + (−0.635 + 0.771i)5-s − 1.11·6-s − 1.56i·7-s − 0.353i·8-s − 1.48·9-s + (−0.545 − 0.449i)10-s − 1.43·11-s − 0.788i·12-s + 1.08i·13-s + 1.10·14-s + (−1.21 − 1.00i)15-s + 0.250·16-s + 0.804i·17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.635+0.771i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.635+0.771i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.635+0.771i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.635+0.771i)
|
Particular Values
L(1) |
≈ |
0.278007−0.589096i |
L(21) |
≈ |
0.278007−0.589096i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1+(1.42−1.72i)T |
| 37 | 1−iT |
good | 3 | 1−2.72iT−3T2 |
| 7 | 1+4.14iT−7T2 |
| 11 | 1+4.76T+11T2 |
| 13 | 1−3.91iT−13T2 |
| 17 | 1−3.31iT−17T2 |
| 19 | 1−1.85T+19T2 |
| 23 | 1−1.54iT−23T2 |
| 29 | 1+8.87T+29T2 |
| 31 | 1−9.75T+31T2 |
| 41 | 1+5.06T+41T2 |
| 43 | 1−9.99iT−43T2 |
| 47 | 1−4.82iT−47T2 |
| 53 | 1−5.13iT−53T2 |
| 59 | 1−1.05T+59T2 |
| 61 | 1+4.14T+61T2 |
| 67 | 1−1.00iT−67T2 |
| 71 | 1−6.45T+71T2 |
| 73 | 1+10.7iT−73T2 |
| 79 | 1−1.19T+79T2 |
| 83 | 1+10.6iT−83T2 |
| 89 | 1+7.29T+89T2 |
| 97 | 1−14.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.55600511943335852781434535284, −10.71903331077717451307441586625, −10.25989179603639685955839769232, −9.426149915438756562736027514646, −8.068916918924450628884720247867, −7.42567522658600133985910479644, −6.27044265482744543734007670000, −4.84058939518166643161312483564, −4.15397684502326706821031253525, −3.28305222794189869118810119477,
0.42785923145299655776089429301, 2.12798534705374300661897601621, 3.03447413166692801916792642754, 5.15036458068803691678015627947, 5.67229176060720202403518309978, 7.29277915265731209765715638638, 8.178917193068714702186877004839, 8.616853468119460071405087650975, 9.877219962124118192842413110611, 11.27385290597049912506484471065