L(s) = 1 | + i·2-s − 2.62i·3-s − 4-s + (1.70 + 1.44i)5-s + 2.62·6-s − 1.83i·7-s − i·8-s − 3.89·9-s + (−1.44 + 1.70i)10-s + 4.19·11-s + 2.62i·12-s + 0.369i·13-s + 1.83·14-s + (3.79 − 4.47i)15-s + 16-s − 5.08i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.51i·3-s − 0.5·4-s + (0.762 + 0.646i)5-s + 1.07·6-s − 0.692i·7-s − 0.353i·8-s − 1.29·9-s + (−0.457 + 0.539i)10-s + 1.26·11-s + 0.757i·12-s + 0.102i·13-s + 0.489·14-s + (0.980 − 1.15i)15-s + 0.250·16-s − 1.23i·17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.762+0.646i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.762+0.646i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.762+0.646i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.762+0.646i)
|
Particular Values
L(1) |
≈ |
1.37764−0.505616i |
L(21) |
≈ |
1.37764−0.505616i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1+(−1.70−1.44i)T |
| 37 | 1−iT |
good | 3 | 1+2.62iT−3T2 |
| 7 | 1+1.83iT−7T2 |
| 11 | 1−4.19T+11T2 |
| 13 | 1−0.369iT−13T2 |
| 17 | 1+5.08iT−17T2 |
| 19 | 1+3.55T+19T2 |
| 23 | 1+5.62iT−23T2 |
| 29 | 1+1.20T+29T2 |
| 31 | 1−10.1T+31T2 |
| 41 | 1+8.01T+41T2 |
| 43 | 1−2.27iT−43T2 |
| 47 | 1−10.9iT−47T2 |
| 53 | 1−9.94iT−53T2 |
| 59 | 1−5.34T+59T2 |
| 61 | 1+9.79T+61T2 |
| 67 | 1−1.85iT−67T2 |
| 71 | 1−2.86T+71T2 |
| 73 | 1−8.09iT−73T2 |
| 79 | 1+6.06T+79T2 |
| 83 | 1−8.93iT−83T2 |
| 89 | 1+11.4T+89T2 |
| 97 | 1−6.05iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47529982634392767198273018490, −10.30885637107653620888659353485, −9.269728557592769380594043836003, −8.238062434702185586076647911974, −7.15177947766005251355371343765, −6.67693257951949566975457504481, −6.06058979012472761341266422193, −4.45030878689047533762249394042, −2.68946954117892575433683834986, −1.15742013890095378258044901024,
1.84213289369450174461901842888, 3.49608328756568861810200040506, 4.39486599754975174503097917282, 5.36560315906133467785132791607, 6.29396687202998277697633103484, 8.550835254716635621981619987209, 8.892122956925646261534946046606, 9.878054097338939385932952051973, 10.27921196098941964021646622906, 11.45242072300559178676905444079