L(s) = 1 | − 10·2-s + 55·4-s − 3·5-s − 220·8-s + 11·9-s + 30·10-s − 2·13-s + 715·16-s + 18·17-s − 110·18-s − 165·20-s + 10·23-s + 7·25-s + 20·26-s − 2.00e3·32-s − 180·34-s + 605·36-s − 8·37-s + 660·40-s − 4·41-s − 10·43-s − 33·45-s − 100·46-s + 31·49-s − 70·50-s − 110·52-s + 5.00e3·64-s + ⋯ |
L(s) = 1 | − 7.07·2-s + 55/2·4-s − 1.34·5-s − 77.7·8-s + 11/3·9-s + 9.48·10-s − 0.554·13-s + 178.·16-s + 4.36·17-s − 25.9·18-s − 36.8·20-s + 2.08·23-s + 7/5·25-s + 3.92·26-s − 353.·32-s − 30.8·34-s + 100.·36-s − 1.31·37-s + 104.·40-s − 0.624·41-s − 1.52·43-s − 4.91·45-s − 14.7·46-s + 31/7·49-s − 9.89·50-s − 15.2·52-s + 625.·64-s + ⋯ |
Λ(s)=(=((210⋅510⋅3710)s/2ΓC(s)10L(s)Λ(2−s)
Λ(s)=(=((210⋅510⋅3710)s/2ΓC(s+1/2)10L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.1900248400 |
L(21) |
≈ |
0.1900248400 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1+T)10 |
| 5 | 1+3T+2T2−16T3−19T4−22T5−19pT6−16p2T7+2p3T8+3p4T9+p5T10 |
| 37 | 1+8T+97T2+576T3+5282T4+25584T5+5282pT6+576p2T7+97p3T8+8p4T9+p5T10 |
good | 3 | 1−11T2+52T4−32pT6−193T8+1390T10−193p2T12−32p5T14+52p6T16−11p8T18+p10T20 |
| 7 | 1−31T2+459T4−4364T6+31924T8−218314T10+31924p2T12−4364p4T14+459p6T16−31p8T18+p10T20 |
| 11 | (1+27T2+51T3+302T4+1074T5+302pT6+51p2T7+27p3T8+p5T10)2 |
| 13 | (1+T+2pT2−48T3+329T4−1098T5+329pT6−48p2T7+2p4T8+p4T9+p5T10)2 |
| 17 | (1−9T+89T2−504T3+2982T4−12078T5+2982pT6−504p2T7+89p3T8−9p4T9+p5T10)2 |
| 19 | 1−72T2+2977T4−90248T6+2204454T8−45625440T10+2204454p2T12−90248p4T14+2977p6T16−72p8T18+p10T20 |
| 23 | (1−5T+52T2−152T3+1199T4−2470T5+1199pT6−152p2T7+52p3T8−5p4T9+p5T10)2 |
| 29 | 1−108T2+5879T4−231107T6+276700pT8−249440874T10+276700p3T12−231107p4T14+5879p6T16−108p8T18+p10T20 |
| 31 | 1−194T2+18979T4−1222911T6+57220962T8−2026943118T10+57220962p2T12−1222911p4T14+18979p6T16−194p8T18+p10T20 |
| 41 | (1+2T+161T2+417T3+11390T4+27434T5+11390pT6+417p2T7+161p3T8+2p4T9+p5T10)2 |
| 43 | (1+5T+127T2+784T3+8994T4+46310T5+8994pT6+784p2T7+127p3T8+5p4T9+p5T10)2 |
| 47 | 1−160T2+11993T4−511560T6+12029318T8−253577648T10+12029318p2T12−511560p4T14+11993p6T16−160p8T18+p10T20 |
| 53 | 1−273T2+40401T4−4128228T6+317307718T8−18960642934T10+317307718p2T12−4128228p4T14+40401p6T16−273p8T18+p10T20 |
| 59 | 1−352T2+63153T4−7528424T6+659017222T8−44169143152T10+659017222p2T12−7528424p4T14+63153p6T16−352p8T18+p10T20 |
| 61 | 1−460T2+97647T4−12826483T6+19411236pT8−82282695178T10+19411236p3T12−12826483p4T14+97647p6T16−460p8T18+p10T20 |
| 67 | 1−303T2+54020T4−6711456T6+641201935T8−48089295626T10+641201935p2T12−6711456p4T14+54020p6T16−303p8T18+p10T20 |
| 71 | (1+10T+191T2+944T3+12662T4+37836T5+12662pT6+944p2T7+191p3T8+10p4T9+p5T10)2 |
| 73 | 1−541T2+140394T4−23094490T6+2668314981T8−226082874802T10+2668314981p2T12−23094490p4T14+140394p6T16−541p8T18+p10T20 |
| 79 | 1−499T2+127952T4−21543420T6+2613057515T8−237224216810T10+2613057515p2T12−21543420p4T14+127952p6T16−499p8T18+p10T20 |
| 83 | 1−364T2+62793T4−7248824T6+680746366T8−58266464440T10+680746366p2T12−7248824p4T14+62793p6T16−364p8T18+p10T20 |
| 89 | 1−478T2+122989T4−21250184T6+2738250882T8−274126598068T10+2738250882p2T12−21250184p4T14+122989p6T16−478p8T18+p10T20 |
| 97 | (1−T+307T2−636T3+45116T4−103398T5+45116pT6−636p2T7+307p3T8−p4T9+p5T10)2 |
show more | |
show less | |
L(s)=p∏ j=1∏20(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.17905450228621559789044926836, −4.05493135743222481555777632216, −4.04688652980808904983934830242, −3.93717686973128500184503330128, −3.66003666680008734498482460014, −3.64250923049939807967731791641, −3.34950857922547723215366095390, −3.25735311500383785121737984036, −3.12463151612735575852697414868, −3.09165077297633279601414564889, −2.87184479737424485641990223304, −2.80636339663185185620768448702, −2.68347517565279136380534429680, −2.39325109486815813608967620118, −2.18381892287677649437099199069, −1.90476899800056057084679979235, −1.80734505940661399190237106758, −1.79878270560593480113151527628, −1.61057951853498497082538792134, −1.20856738834502712407637389645, −1.15202431365447672837557696624, −1.09669338376445786986416008131, −0.986373115977527113288308057356, −0.66658622304901902266149138920, −0.39426706405684723631154924903,
0.39426706405684723631154924903, 0.66658622304901902266149138920, 0.986373115977527113288308057356, 1.09669338376445786986416008131, 1.15202431365447672837557696624, 1.20856738834502712407637389645, 1.61057951853498497082538792134, 1.79878270560593480113151527628, 1.80734505940661399190237106758, 1.90476899800056057084679979235, 2.18381892287677649437099199069, 2.39325109486815813608967620118, 2.68347517565279136380534429680, 2.80636339663185185620768448702, 2.87184479737424485641990223304, 3.09165077297633279601414564889, 3.12463151612735575852697414868, 3.25735311500383785121737984036, 3.34950857922547723215366095390, 3.64250923049939807967731791641, 3.66003666680008734498482460014, 3.93717686973128500184503330128, 4.04688652980808904983934830242, 4.05493135743222481555777632216, 4.17905450228621559789044926836
Plot not available for L-functions of degree greater than 10.