L(s) = 1 | + 2-s − 0.377i·3-s + 4-s + (−1.04 + 1.97i)5-s − 0.377i·6-s − 0.631i·7-s + 8-s + 2.85·9-s + (−1.04 + 1.97i)10-s + 1.24·11-s − 0.377i·12-s + 3.34·13-s − 0.631i·14-s + (0.746 + 0.395i)15-s + 16-s + 3.10·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.218i·3-s + 0.5·4-s + (−0.468 + 0.883i)5-s − 0.154i·6-s − 0.238i·7-s + 0.353·8-s + 0.952·9-s + (−0.331 + 0.624i)10-s + 0.376·11-s − 0.109i·12-s + 0.929·13-s − 0.168i·14-s + (0.192 + 0.102i)15-s + 0.250·16-s + 0.753·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.04902 + 0.260611i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.04902 + 0.260611i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 + (1.04 - 1.97i)T \) |
| 37 | \( 1 + (4.10 + 4.48i)T \) |
good | 3 | \( 1 + 0.377iT - 3T^{2} \) |
| 7 | \( 1 + 0.631iT - 7T^{2} \) |
| 11 | \( 1 - 1.24T + 11T^{2} \) |
| 13 | \( 1 - 3.34T + 13T^{2} \) |
| 17 | \( 1 - 3.10T + 17T^{2} \) |
| 19 | \( 1 - 5.97iT - 19T^{2} \) |
| 23 | \( 1 + 7.60T + 23T^{2} \) |
| 29 | \( 1 + 9.57iT - 29T^{2} \) |
| 31 | \( 1 - 7.26iT - 31T^{2} \) |
| 41 | \( 1 + 8.45T + 41T^{2} \) |
| 43 | \( 1 + 4.86T + 43T^{2} \) |
| 47 | \( 1 + 13.1iT - 47T^{2} \) |
| 53 | \( 1 - 7.17iT - 53T^{2} \) |
| 59 | \( 1 + 4.36iT - 59T^{2} \) |
| 61 | \( 1 + 2.14iT - 61T^{2} \) |
| 67 | \( 1 - 11.3iT - 67T^{2} \) |
| 71 | \( 1 + 12.7T + 71T^{2} \) |
| 73 | \( 1 - 4.45iT - 73T^{2} \) |
| 79 | \( 1 + 8.78iT - 79T^{2} \) |
| 83 | \( 1 - 6.63iT - 83T^{2} \) |
| 89 | \( 1 + 13.7iT - 89T^{2} \) |
| 97 | \( 1 - 11.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.86391605977728200880053630706, −10.33928670801098963741726916937, −10.17550667955299126702811610654, −8.331387648450424906346474109041, −7.50135563478597676652581842105, −6.60959792589456473226612287299, −5.76357120815864462371683480803, −4.08532625308258404663766860404, −3.55946677321607037982958348439, −1.79158704786999929262269630690,
1.49268974262983817099086377144, 3.45715606246204618043320582855, 4.37067580394668454147739842349, 5.27384187098563786199027792902, 6.45270859264557915541434531324, 7.55072336993694859881495665213, 8.573846417888219642703611588560, 9.514461157426103623943952256949, 10.57772688564403866369237988595, 11.62629197279110086425948792138