L(s) = 1 | + 2-s − 0.377i·3-s + 4-s + (−1.04 + 1.97i)5-s − 0.377i·6-s − 0.631i·7-s + 8-s + 2.85·9-s + (−1.04 + 1.97i)10-s + 1.24·11-s − 0.377i·12-s + 3.34·13-s − 0.631i·14-s + (0.746 + 0.395i)15-s + 16-s + 3.10·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.218i·3-s + 0.5·4-s + (−0.468 + 0.883i)5-s − 0.154i·6-s − 0.238i·7-s + 0.353·8-s + 0.952·9-s + (−0.331 + 0.624i)10-s + 0.376·11-s − 0.109i·12-s + 0.929·13-s − 0.168i·14-s + (0.192 + 0.102i)15-s + 0.250·16-s + 0.753·17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.968−0.250i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.968−0.250i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.968−0.250i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(369,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.968−0.250i)
|
Particular Values
L(1) |
≈ |
2.04902+0.260611i |
L(21) |
≈ |
2.04902+0.260611i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1+(1.04−1.97i)T |
| 37 | 1+(4.10+4.48i)T |
good | 3 | 1+0.377iT−3T2 |
| 7 | 1+0.631iT−7T2 |
| 11 | 1−1.24T+11T2 |
| 13 | 1−3.34T+13T2 |
| 17 | 1−3.10T+17T2 |
| 19 | 1−5.97iT−19T2 |
| 23 | 1+7.60T+23T2 |
| 29 | 1+9.57iT−29T2 |
| 31 | 1−7.26iT−31T2 |
| 41 | 1+8.45T+41T2 |
| 43 | 1+4.86T+43T2 |
| 47 | 1+13.1iT−47T2 |
| 53 | 1−7.17iT−53T2 |
| 59 | 1+4.36iT−59T2 |
| 61 | 1+2.14iT−61T2 |
| 67 | 1−11.3iT−67T2 |
| 71 | 1+12.7T+71T2 |
| 73 | 1−4.45iT−73T2 |
| 79 | 1+8.78iT−79T2 |
| 83 | 1−6.63iT−83T2 |
| 89 | 1+13.7iT−89T2 |
| 97 | 1−11.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.86391605977728200880053630706, −10.33928670801098963741726916937, −10.17550667955299126702811610654, −8.331387648450424906346474109041, −7.50135563478597676652581842105, −6.60959792589456473226612287299, −5.76357120815864462371683480803, −4.08532625308258404663766860404, −3.55946677321607037982958348439, −1.79158704786999929262269630690,
1.49268974262983817099086377144, 3.45715606246204618043320582855, 4.37067580394668454147739842349, 5.27384187098563786199027792902, 6.45270859264557915541434531324, 7.55072336993694859881495665213, 8.573846417888219642703611588560, 9.514461157426103623943952256949, 10.57772688564403866369237988595, 11.62629197279110086425948792138