L(s) = 1 | + i·2-s − 4-s + i·5-s + 5·7-s − i·8-s − 3·9-s − 10-s + 3·11-s + 2i·13-s + 5i·14-s + 16-s − i·17-s − 3i·18-s + 2i·19-s − i·20-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.447i·5-s + 1.88·7-s − 0.353i·8-s − 9-s − 0.316·10-s + 0.904·11-s + 0.554i·13-s + 1.33i·14-s + 0.250·16-s − 0.242i·17-s − 0.707i·18-s + 0.458i·19-s − 0.223i·20-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.164−0.986i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.164−0.986i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.164−0.986i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(221,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.164−0.986i)
|
Particular Values
L(1) |
≈ |
1.12137+0.949949i |
L(21) |
≈ |
1.12137+0.949949i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1−iT |
| 37 | 1+(−1+6i)T |
good | 3 | 1+3T2 |
| 7 | 1−5T+7T2 |
| 11 | 1−3T+11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1+iT−17T2 |
| 19 | 1−2iT−19T2 |
| 23 | 1−6iT−23T2 |
| 29 | 1−5iT−29T2 |
| 31 | 1−iT−31T2 |
| 41 | 1−5T+41T2 |
| 43 | 1+11iT−43T2 |
| 47 | 1+8T+47T2 |
| 53 | 1+9T+53T2 |
| 59 | 1+12iT−59T2 |
| 61 | 1+7iT−61T2 |
| 67 | 1−2T+67T2 |
| 71 | 1−2T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−79T2 |
| 83 | 1+12T+83T2 |
| 89 | 1−4iT−89T2 |
| 97 | 1+11iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38535450603358434949651587528, −11.01813855821274131465918536013, −9.502988323329158951080709023435, −8.638622250309714165735668203535, −7.86666365125470232879567897046, −6.95509674041225330471271564641, −5.75614913427035035115577633899, −4.91001198159744368286971336078, −3.66799652141793241573627985898, −1.76595702036829419059033839363,
1.20415248561010885495150745839, 2.60439181039286588324359421768, 4.26241489100573263738454712543, 5.00510690401806604401580998990, 6.15982169094809552272739788908, 7.920384719287853773541256781167, 8.403454162043797059519129602577, 9.279632933407168197259545241829, 10.53704253329823385867232383739, 11.42731315511054187933035705937