Properties

Label 2-370-37.36-c1-0-3
Degree $2$
Conductor $370$
Sign $0.164 - 0.986i$
Analytic cond. $2.95446$
Root an. cond. $1.71885$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + i·5-s + 5·7-s i·8-s − 3·9-s − 10-s + 3·11-s + 2i·13-s + 5i·14-s + 16-s i·17-s − 3i·18-s + 2i·19-s i·20-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 0.447i·5-s + 1.88·7-s − 0.353i·8-s − 9-s − 0.316·10-s + 0.904·11-s + 0.554i·13-s + 1.33i·14-s + 0.250·16-s − 0.242i·17-s − 0.707i·18-s + 0.458i·19-s − 0.223i·20-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.164 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.164 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(370\)    =    \(2 \cdot 5 \cdot 37\)
Sign: $0.164 - 0.986i$
Analytic conductor: \(2.95446\)
Root analytic conductor: \(1.71885\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{370} (221, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 370,\ (\ :1/2),\ 0.164 - 0.986i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.12137 + 0.949949i\)
\(L(\frac12)\) \(\approx\) \(1.12137 + 0.949949i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
5 \( 1 - iT \)
37 \( 1 + (-1 + 6i)T \)
good3 \( 1 + 3T^{2} \)
7 \( 1 - 5T + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 + iT - 17T^{2} \)
19 \( 1 - 2iT - 19T^{2} \)
23 \( 1 - 6iT - 23T^{2} \)
29 \( 1 - 5iT - 29T^{2} \)
31 \( 1 - iT - 31T^{2} \)
41 \( 1 - 5T + 41T^{2} \)
43 \( 1 + 11iT - 43T^{2} \)
47 \( 1 + 8T + 47T^{2} \)
53 \( 1 + 9T + 53T^{2} \)
59 \( 1 + 12iT - 59T^{2} \)
61 \( 1 + 7iT - 61T^{2} \)
67 \( 1 - 2T + 67T^{2} \)
71 \( 1 - 2T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 - 4iT - 89T^{2} \)
97 \( 1 + 11iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.38535450603358434949651587528, −11.01813855821274131465918536013, −9.502988323329158951080709023435, −8.638622250309714165735668203535, −7.86666365125470232879567897046, −6.95509674041225330471271564641, −5.75614913427035035115577633899, −4.91001198159744368286971336078, −3.66799652141793241573627985898, −1.76595702036829419059033839363, 1.20415248561010885495150745839, 2.60439181039286588324359421768, 4.26241489100573263738454712543, 5.00510690401806604401580998990, 6.15982169094809552272739788908, 7.920384719287853773541256781167, 8.403454162043797059519129602577, 9.279632933407168197259545241829, 10.53704253329823385867232383739, 11.42731315511054187933035705937

Graph of the $Z$-function along the critical line