L(s) = 1 | − i·2-s − 1.14·3-s − 4-s + i·5-s + 1.14i·6-s − 0.342·7-s + i·8-s − 1.68·9-s + 10-s + 1.19·11-s + 1.14·12-s + 4.68i·13-s + 0.342i·14-s − 1.14i·15-s + 16-s + 4.17i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.661·3-s − 0.5·4-s + 0.447i·5-s + 0.468i·6-s − 0.129·7-s + 0.353i·8-s − 0.561·9-s + 0.316·10-s + 0.360·11-s + 0.330·12-s + 1.29i·13-s + 0.0916i·14-s − 0.295i·15-s + 0.250·16-s + 1.01i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.617554 + 0.344413i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.617554 + 0.344413i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 - iT \) |
| 37 | \( 1 + (3.19 - 5.17i)T \) |
good | 3 | \( 1 + 1.14T + 3T^{2} \) |
| 7 | \( 1 + 0.342T + 7T^{2} \) |
| 11 | \( 1 - 1.19T + 11T^{2} \) |
| 13 | \( 1 - 4.68iT - 13T^{2} \) |
| 17 | \( 1 - 4.17iT - 17T^{2} \) |
| 19 | \( 1 - 3.14iT - 19T^{2} \) |
| 23 | \( 1 - 4.68iT - 23T^{2} \) |
| 29 | \( 1 + 0.803iT - 29T^{2} \) |
| 31 | \( 1 + 4.63iT - 31T^{2} \) |
| 41 | \( 1 - 3.78T + 41T^{2} \) |
| 43 | \( 1 - 1.19iT - 43T^{2} \) |
| 47 | \( 1 - 3.83T + 47T^{2} \) |
| 53 | \( 1 + 11.1T + 53T^{2} \) |
| 59 | \( 1 + 0.167iT - 59T^{2} \) |
| 61 | \( 1 + 2.17iT - 61T^{2} \) |
| 67 | \( 1 + 1.24T + 67T^{2} \) |
| 71 | \( 1 - 0.685T + 71T^{2} \) |
| 73 | \( 1 + 11.9T + 73T^{2} \) |
| 79 | \( 1 + 5.14iT - 79T^{2} \) |
| 83 | \( 1 - 4.22T + 83T^{2} \) |
| 89 | \( 1 - 4.58iT - 89T^{2} \) |
| 97 | \( 1 - 4.21iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.53950805851911405950000659779, −10.84621041198280719911883933654, −9.884372998547044949999666792093, −9.011580884845708462647618050866, −7.899910372832608648497055592126, −6.53999548683079857210553413401, −5.80038710907015613689055800045, −4.44076266777878734100764604922, −3.33995885709405898999953572755, −1.76169980122040947232616136882,
0.52537967101425068786978737934, 3.03382614885322601685958042059, 4.68472604067084461177339499677, 5.43886068796977401790629280949, 6.35135894572237812660437542987, 7.37842996367695302901964751585, 8.467945555306155161104821769906, 9.204454609720456101514015938899, 10.36339021387972400136835650220, 11.24351360592439260654377680822