L(s) = 1 | − i·2-s − 1.14·3-s − 4-s + i·5-s + 1.14i·6-s − 0.342·7-s + i·8-s − 1.68·9-s + 10-s + 1.19·11-s + 1.14·12-s + 4.68i·13-s + 0.342i·14-s − 1.14i·15-s + 16-s + 4.17i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.661·3-s − 0.5·4-s + 0.447i·5-s + 0.468i·6-s − 0.129·7-s + 0.353i·8-s − 0.561·9-s + 0.316·10-s + 0.360·11-s + 0.330·12-s + 1.29i·13-s + 0.0916i·14-s − 0.295i·15-s + 0.250·16-s + 1.01i·17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.525−0.850i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.525−0.850i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(221,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.525−0.850i)
|
Particular Values
L(1) |
≈ |
0.617554+0.344413i |
L(21) |
≈ |
0.617554+0.344413i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1−iT |
| 37 | 1+(3.19−5.17i)T |
good | 3 | 1+1.14T+3T2 |
| 7 | 1+0.342T+7T2 |
| 11 | 1−1.19T+11T2 |
| 13 | 1−4.68iT−13T2 |
| 17 | 1−4.17iT−17T2 |
| 19 | 1−3.14iT−19T2 |
| 23 | 1−4.68iT−23T2 |
| 29 | 1+0.803iT−29T2 |
| 31 | 1+4.63iT−31T2 |
| 41 | 1−3.78T+41T2 |
| 43 | 1−1.19iT−43T2 |
| 47 | 1−3.83T+47T2 |
| 53 | 1+11.1T+53T2 |
| 59 | 1+0.167iT−59T2 |
| 61 | 1+2.17iT−61T2 |
| 67 | 1+1.24T+67T2 |
| 71 | 1−0.685T+71T2 |
| 73 | 1+11.9T+73T2 |
| 79 | 1+5.14iT−79T2 |
| 83 | 1−4.22T+83T2 |
| 89 | 1−4.58iT−89T2 |
| 97 | 1−4.21iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53950805851911405950000659779, −10.84621041198280719911883933654, −9.884372998547044949999666792093, −9.011580884845708462647618050866, −7.899910372832608648497055592126, −6.53999548683079857210553413401, −5.80038710907015613689055800045, −4.44076266777878734100764604922, −3.33995885709405898999953572755, −1.76169980122040947232616136882,
0.52537967101425068786978737934, 3.03382614885322601685958042059, 4.68472604067084461177339499677, 5.43886068796977401790629280949, 6.35135894572237812660437542987, 7.37842996367695302901964751585, 8.467945555306155161104821769906, 9.204454609720456101514015938899, 10.36339021387972400136835650220, 11.24351360592439260654377680822