L(s) = 1 | + (−0.5 − 0.866i)2-s + (−1.38 + 2.40i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 2.77·6-s + (−1.65 + 2.86i)7-s + 0.999·8-s + (−2.35 − 4.08i)9-s − 0.999·10-s + 1.52·11-s + (−1.38 − 2.40i)12-s + (−2.09 + 3.62i)13-s + 3.30·14-s + (1.38 + 2.40i)15-s + (−0.5 − 0.866i)16-s + (−3.90 − 6.76i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.802 + 1.38i)3-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + 1.13·6-s + (−0.625 + 1.08i)7-s + 0.353·8-s + (−0.786 − 1.36i)9-s − 0.316·10-s + 0.461·11-s + (−0.401 − 0.694i)12-s + (−0.581 + 1.00i)13-s + 0.884·14-s + (0.358 + 0.621i)15-s + (−0.125 − 0.216i)16-s + (−0.946 − 1.63i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.993−0.115i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.993−0.115i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.993−0.115i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(211,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.993−0.115i)
|
Particular Values
L(1) |
≈ |
0.0164852+0.285005i |
L(21) |
≈ |
0.0164852+0.285005i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 5 | 1+(−0.5+0.866i)T |
| 37 | 1+(2.87−5.36i)T |
good | 3 | 1+(1.38−2.40i)T+(−1.5−2.59i)T2 |
| 7 | 1+(1.65−2.86i)T+(−3.5−6.06i)T2 |
| 11 | 1−1.52T+11T2 |
| 13 | 1+(2.09−3.62i)T+(−6.5−11.2i)T2 |
| 17 | 1+(3.90+6.76i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.110+0.191i)T+(−9.5−16.4i)T2 |
| 23 | 1+3.52T+23T2 |
| 29 | 1+6.49T+29T2 |
| 31 | 1+4.41T+31T2 |
| 41 | 1+(0.610−1.05i)T+(−20.5−35.5i)T2 |
| 43 | 1+0.162T+43T2 |
| 47 | 1−11.9T+47T2 |
| 53 | 1+(−1.98−3.43i)T+(−26.5+45.8i)T2 |
| 59 | 1+(0.543+0.940i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−7.24+12.5i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.83−6.64i)T+(−33.5−58.0i)T2 |
| 71 | 1+(7.08−12.2i)T+(−35.5−61.4i)T2 |
| 73 | 1+7.80T+73T2 |
| 79 | 1+(2.52−4.38i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−4.71−8.17i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−8.66−15.0i)T+(−44.5+77.0i)T2 |
| 97 | 1−8.38T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.73670034856786985463734047407, −10.98102386334011149549404219809, −9.774787669171032875843699707645, −9.373769534920697892430461154065, −8.837859671579324453453144079536, −6.98766700914879932548003221969, −5.75348154401639637230193194635, −4.86296514984672649015973965207, −3.89962660111783910739408884010, −2.40628554290662796725594291143,
0.22773485841677310350487891455, 1.84914645517564051397878052737, 3.91203350871080451544902344016, 5.68066756347350282256813898930, 6.27278864180423343487412863745, 7.21557183909617592970986467237, 7.61853496126903900194905281901, 8.933377597502440625277304686583, 10.33268056017700519764503683166, 10.72646302941709621525014874073