L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.144 − 0.250i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s − 0.289·6-s + (−1.26 + 2.18i)7-s + 0.999·8-s + (1.45 + 2.52i)9-s − 0.999·10-s + 3.81·11-s + (0.144 + 0.250i)12-s + (2.86 − 4.96i)13-s + 2.52·14-s + (−0.144 − 0.250i)15-s + (−0.5 − 0.866i)16-s + (1.84 + 3.18i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.0834 − 0.144i)3-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s − 0.118·6-s + (−0.477 + 0.826i)7-s + 0.353·8-s + (0.486 + 0.841i)9-s − 0.316·10-s + 1.14·11-s + (0.0417 + 0.0722i)12-s + (0.794 − 1.37i)13-s + 0.674·14-s + (−0.0373 − 0.0646i)15-s + (−0.125 − 0.216i)16-s + (0.446 + 0.773i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.805+0.592i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.805+0.592i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.805+0.592i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(211,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.805+0.592i)
|
Particular Values
L(1) |
≈ |
1.19455−0.392191i |
L(21) |
≈ |
1.19455−0.392191i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 5 | 1+(−0.5+0.866i)T |
| 37 | 1+(−5.15+3.23i)T |
good | 3 | 1+(−0.144+0.250i)T+(−1.5−2.59i)T2 |
| 7 | 1+(1.26−2.18i)T+(−3.5−6.06i)T2 |
| 11 | 1−3.81T+11T2 |
| 13 | 1+(−2.86+4.96i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−1.84−3.18i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.64+2.84i)T+(−9.5−16.4i)T2 |
| 23 | 1+5.81T+23T2 |
| 29 | 1−4.20T+29T2 |
| 31 | 1−2.44T+31T2 |
| 41 | 1+(2.14−3.71i)T+(−20.5−35.5i)T2 |
| 43 | 1−1.33T+43T2 |
| 47 | 1+5.64T+47T2 |
| 53 | 1+(4.50+7.81i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−1.38−2.39i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1.89+3.28i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.33−9.24i)T+(−33.5−58.0i)T2 |
| 71 | 1+(3.23−5.60i)T+(−35.5−61.4i)T2 |
| 73 | 1−3.68T+73T2 |
| 79 | 1+(4.81−8.33i)T+(−39.5−68.4i)T2 |
| 83 | 1+(2.91+5.05i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−4.06−7.04i)T+(−44.5+77.0i)T2 |
| 97 | 1+11.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.31441376524831375384927710456, −10.26554674281918097371873235463, −9.599923605101825963861338388921, −8.535218001079716934709381165942, −7.949166636999463076145621305883, −6.45511118436561752728484633454, −5.46510240700244332980823877952, −4.07845937619389538444402386742, −2.78284069735148578753788491084, −1.35353940923775450100826079347,
1.30779729684796337297059234854, 3.57125942676901183339414649271, 4.37583017006602314302165414779, 6.23509721058419002339828757510, 6.58851666713846557459954857287, 7.56691398108478970641444149011, 8.879932980236489986910520564877, 9.643736220553858693288606754795, 10.19304443816871801402793756513, 11.49460136119246568161317387677