L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.144 − 0.250i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s − 0.289·6-s + (−1.26 + 2.18i)7-s + 0.999·8-s + (1.45 + 2.52i)9-s − 0.999·10-s + 3.81·11-s + (0.144 + 0.250i)12-s + (2.86 − 4.96i)13-s + 2.52·14-s + (−0.144 − 0.250i)15-s + (−0.5 − 0.866i)16-s + (1.84 + 3.18i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.0834 − 0.144i)3-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s − 0.118·6-s + (−0.477 + 0.826i)7-s + 0.353·8-s + (0.486 + 0.841i)9-s − 0.316·10-s + 1.14·11-s + (0.0417 + 0.0722i)12-s + (0.794 − 1.37i)13-s + 0.674·14-s + (−0.0373 − 0.0646i)15-s + (−0.125 − 0.216i)16-s + (0.446 + 0.773i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 + 0.592i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.805 + 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19455 - 0.392191i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19455 - 0.392191i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-5.15 + 3.23i)T \) |
good | 3 | \( 1 + (-0.144 + 0.250i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (1.26 - 2.18i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 3.81T + 11T^{2} \) |
| 13 | \( 1 + (-2.86 + 4.96i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.84 - 3.18i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.64 + 2.84i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 5.81T + 23T^{2} \) |
| 29 | \( 1 - 4.20T + 29T^{2} \) |
| 31 | \( 1 - 2.44T + 31T^{2} \) |
| 41 | \( 1 + (2.14 - 3.71i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 1.33T + 43T^{2} \) |
| 47 | \( 1 + 5.64T + 47T^{2} \) |
| 53 | \( 1 + (4.50 + 7.81i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.38 - 2.39i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.89 + 3.28i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.33 - 9.24i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.23 - 5.60i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 3.68T + 73T^{2} \) |
| 79 | \( 1 + (4.81 - 8.33i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.91 + 5.05i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.06 - 7.04i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 11.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.31441376524831375384927710456, −10.26554674281918097371873235463, −9.599923605101825963861338388921, −8.535218001079716934709381165942, −7.949166636999463076145621305883, −6.45511118436561752728484633454, −5.46510240700244332980823877952, −4.07845937619389538444402386742, −2.78284069735148578753788491084, −1.35353940923775450100826079347,
1.30779729684796337297059234854, 3.57125942676901183339414649271, 4.37583017006602314302165414779, 6.23509721058419002339828757510, 6.58851666713846557459954857287, 7.56691398108478970641444149011, 8.879932980236489986910520564877, 9.643736220553858693288606754795, 10.19304443816871801402793756513, 11.49460136119246568161317387677