L(s) = 1 | + i·2-s + (−1 − i)3-s − 4-s + (2 + i)5-s + (1 − i)6-s + (1 + i)7-s − i·8-s − i·9-s + (−1 + 2i)10-s + 2i·11-s + (1 + i)12-s − 2i·13-s + (−1 + i)14-s + (−1 − 3i)15-s + 16-s + 4·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.577 − 0.577i)3-s − 0.5·4-s + (0.894 + 0.447i)5-s + (0.408 − 0.408i)6-s + (0.377 + 0.377i)7-s − 0.353i·8-s − 0.333i·9-s + (−0.316 + 0.632i)10-s + 0.603i·11-s + (0.288 + 0.288i)12-s − 0.554i·13-s + (−0.267 + 0.267i)14-s + (−0.258 − 0.774i)15-s + 0.250·16-s + 0.970·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20964 + 0.506267i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20964 + 0.506267i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (-2 - i)T \) |
| 37 | \( 1 + (6 + i)T \) |
good | 3 | \( 1 + (1 + i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + 7iT^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 - 4T + 17T^{2} \) |
| 19 | \( 1 + (-5 - 5i)T + 19iT^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (-3 + 3i)T - 29iT^{2} \) |
| 31 | \( 1 + (-7 - 7i)T + 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + (7 + 7i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1 + i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1 - i)T + 59iT^{2} \) |
| 61 | \( 1 + (3 + 3i)T + 61iT^{2} \) |
| 67 | \( 1 + (3 - 3i)T - 67iT^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 + (9 + 9i)T + 73iT^{2} \) |
| 79 | \( 1 + (-1 - i)T + 79iT^{2} \) |
| 83 | \( 1 + (5 - 5i)T - 83iT^{2} \) |
| 89 | \( 1 + (5 - 5i)T - 89iT^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85802598157211148736903372086, −10.31116028768085837893689030303, −9.819277877016164792075999364668, −8.585083425982287523215195122926, −7.51897958150786303110733817438, −6.68526356117287462089483685564, −5.77520787672965429489541320677, −5.15287970719384896425515269860, −3.28734478069087000181489345612, −1.45751200082893960204319637478,
1.22265141455069238326682312772, 2.86806587891364778727409853097, 4.47664800244323080901804971475, 5.14830422622777510526286974851, 6.13613439725025295932208442071, 7.67713971542231896259485145227, 8.823461997305896704784924605521, 9.743408199867838337470935935711, 10.34648853603495862491516881824, 11.28381770311072609603543422432