L(s) = 1 | + i·2-s + (−1 − i)3-s − 4-s + (2 + i)5-s + (1 − i)6-s + (1 + i)7-s − i·8-s − i·9-s + (−1 + 2i)10-s + 2i·11-s + (1 + i)12-s − 2i·13-s + (−1 + i)14-s + (−1 − 3i)15-s + 16-s + 4·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.577 − 0.577i)3-s − 0.5·4-s + (0.894 + 0.447i)5-s + (0.408 − 0.408i)6-s + (0.377 + 0.377i)7-s − 0.353i·8-s − 0.333i·9-s + (−0.316 + 0.632i)10-s + 0.603i·11-s + (0.288 + 0.288i)12-s − 0.554i·13-s + (−0.267 + 0.267i)14-s + (−0.258 − 0.774i)15-s + 0.250·16-s + 0.970·17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.701−0.712i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.701−0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.701−0.712i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(327,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.701−0.712i)
|
Particular Values
L(1) |
≈ |
1.20964+0.506267i |
L(21) |
≈ |
1.20964+0.506267i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1+(−2−i)T |
| 37 | 1+(6+i)T |
good | 3 | 1+(1+i)T+3iT2 |
| 7 | 1+(−1−i)T+7iT2 |
| 11 | 1−2iT−11T2 |
| 13 | 1+2iT−13T2 |
| 17 | 1−4T+17T2 |
| 19 | 1+(−5−5i)T+19iT2 |
| 23 | 1−23T2 |
| 29 | 1+(−3+3i)T−29iT2 |
| 31 | 1+(−7−7i)T+31iT2 |
| 41 | 1−41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+(7+7i)T+47iT2 |
| 53 | 1+(−1+i)T−53iT2 |
| 59 | 1+(−1−i)T+59iT2 |
| 61 | 1+(3+3i)T+61iT2 |
| 67 | 1+(3−3i)T−67iT2 |
| 71 | 1+8T+71T2 |
| 73 | 1+(9+9i)T+73iT2 |
| 79 | 1+(−1−i)T+79iT2 |
| 83 | 1+(5−5i)T−83iT2 |
| 89 | 1+(5−5i)T−89iT2 |
| 97 | 1−8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.85802598157211148736903372086, −10.31116028768085837893689030303, −9.819277877016164792075999364668, −8.585083425982287523215195122926, −7.51897958150786303110733817438, −6.68526356117287462089483685564, −5.77520787672965429489541320677, −5.15287970719384896425515269860, −3.28734478069087000181489345612, −1.45751200082893960204319637478,
1.22265141455069238326682312772, 2.86806587891364778727409853097, 4.47664800244323080901804971475, 5.14830422622777510526286974851, 6.13613439725025295932208442071, 7.67713971542231896259485145227, 8.823461997305896704784924605521, 9.743408199867838337470935935711, 10.34648853603495862491516881824, 11.28381770311072609603543422432