Properties

Label 4-370e2-1.1-c1e2-0-10
Degree $4$
Conductor $136900$
Sign $1$
Analytic cond. $8.72886$
Root an. cond. $1.71885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·3-s + 3·4-s − 2·5-s + 4·6-s + 2·7-s + 4·8-s + 2·9-s − 4·10-s + 6·12-s + 4·13-s + 4·14-s − 4·15-s + 5·16-s + 4·18-s − 10·19-s − 6·20-s + 4·21-s + 8·24-s − 25-s + 8·26-s + 6·27-s + 6·28-s − 6·29-s − 8·30-s + 14·31-s + 6·32-s + ⋯
L(s)  = 1  + 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.894·5-s + 1.63·6-s + 0.755·7-s + 1.41·8-s + 2/3·9-s − 1.26·10-s + 1.73·12-s + 1.10·13-s + 1.06·14-s − 1.03·15-s + 5/4·16-s + 0.942·18-s − 2.29·19-s − 1.34·20-s + 0.872·21-s + 1.63·24-s − 1/5·25-s + 1.56·26-s + 1.15·27-s + 1.13·28-s − 1.11·29-s − 1.46·30-s + 2.51·31-s + 1.06·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 136900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 136900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(136900\)    =    \(2^{2} \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(8.72886\)
Root analytic conductor: \(1.71885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 136900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.383813821\)
\(L(\frac12)\) \(\approx\) \(5.383813821\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
37$C_2$ \( 1 + 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.51681049479976715515495458736, −11.43854637309066998618799233508, −10.72214498184088405583760294808, −10.60314747515121830693942006683, −9.913561959008795010014553711726, −9.173798326193050005880679000962, −8.550678622946176948223109707713, −8.309662155208741088838408339798, −7.968092296445966825260904727649, −7.49965213761600358516025530418, −6.61342180482473715016656383816, −6.49397020060739909292475709936, −5.84108691251726407248319257508, −4.99367285908152138982104726730, −4.46225439661671786023374444253, −4.10728915493454226033796375498, −3.64159708286768808345882270281, −2.91408694033091515323513245375, −2.32661717346622627370675610005, −1.48399474842316005654978594715, 1.48399474842316005654978594715, 2.32661717346622627370675610005, 2.91408694033091515323513245375, 3.64159708286768808345882270281, 4.10728915493454226033796375498, 4.46225439661671786023374444253, 4.99367285908152138982104726730, 5.84108691251726407248319257508, 6.49397020060739909292475709936, 6.61342180482473715016656383816, 7.49965213761600358516025530418, 7.968092296445966825260904727649, 8.309662155208741088838408339798, 8.550678622946176948223109707713, 9.173798326193050005880679000962, 9.913561959008795010014553711726, 10.60314747515121830693942006683, 10.72214498184088405583760294808, 11.43854637309066998618799233508, 11.51681049479976715515495458736

Graph of the $Z$-function along the critical line