L(s) = 1 | + 2-s + (1 + i)3-s + 4-s + (−1 + 2i)5-s + (1 + i)6-s + (1 + i)7-s + 8-s − i·9-s + (−1 + 2i)10-s − 2i·11-s + (1 + i)12-s + 2·13-s + (1 + i)14-s + (−3 + i)15-s + 16-s + 4i·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.577 + 0.577i)3-s + 0.5·4-s + (−0.447 + 0.894i)5-s + (0.408 + 0.408i)6-s + (0.377 + 0.377i)7-s + 0.353·8-s − 0.333i·9-s + (−0.316 + 0.632i)10-s − 0.603i·11-s + (0.288 + 0.288i)12-s + 0.554·13-s + (0.267 + 0.267i)14-s + (−0.774 + 0.258i)15-s + 0.250·16-s + 0.970i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.575 - 0.817i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.575 - 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.05922 + 1.06930i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.05922 + 1.06930i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 + (1 - 2i)T \) |
| 37 | \( 1 + (1 + 6i)T \) |
good | 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + 7iT^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 - 4iT - 17T^{2} \) |
| 19 | \( 1 + (5 - 5i)T - 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + (3 + 3i)T + 29iT^{2} \) |
| 31 | \( 1 + (-7 + 7i)T - 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (7 + 7i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1 + i)T - 53iT^{2} \) |
| 59 | \( 1 + (1 - i)T - 59iT^{2} \) |
| 61 | \( 1 + (3 - 3i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3 + 3i)T - 67iT^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 + (-9 - 9i)T + 73iT^{2} \) |
| 79 | \( 1 + (1 - i)T - 79iT^{2} \) |
| 83 | \( 1 + (5 - 5i)T - 83iT^{2} \) |
| 89 | \( 1 + (-5 - 5i)T + 89iT^{2} \) |
| 97 | \( 1 - 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.51681049479976715515495458736, −10.72214498184088405583760294808, −9.913561959008795010014553711726, −8.550678622946176948223109707713, −7.968092296445966825260904727649, −6.49397020060739909292475709936, −5.84108691251726407248319257508, −4.10728915493454226033796375498, −3.64159708286768808345882270281, −2.32661717346622627370675610005,
1.48399474842316005654978594715, 2.91408694033091515323513245375, 4.46225439661671786023374444253, 4.99367285908152138982104726730, 6.61342180482473715016656383816, 7.49965213761600358516025530418, 8.309662155208741088838408339798, 9.173798326193050005880679000962, 10.60314747515121830693942006683, 11.43854637309066998618799233508