L(s) = 1 | + 2-s + (1 + i)3-s + 4-s + (−1 + 2i)5-s + (1 + i)6-s + (1 + i)7-s + 8-s − i·9-s + (−1 + 2i)10-s − 2i·11-s + (1 + i)12-s + 2·13-s + (1 + i)14-s + (−3 + i)15-s + 16-s + 4i·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.577 + 0.577i)3-s + 0.5·4-s + (−0.447 + 0.894i)5-s + (0.408 + 0.408i)6-s + (0.377 + 0.377i)7-s + 0.353·8-s − 0.333i·9-s + (−0.316 + 0.632i)10-s − 0.603i·11-s + (0.288 + 0.288i)12-s + 0.554·13-s + (0.267 + 0.267i)14-s + (−0.774 + 0.258i)15-s + 0.250·16-s + 0.970i·17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.575−0.817i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.575−0.817i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.575−0.817i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(117,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.575−0.817i)
|
Particular Values
L(1) |
≈ |
2.05922+1.06930i |
L(21) |
≈ |
2.05922+1.06930i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1+(1−2i)T |
| 37 | 1+(1+6i)T |
good | 3 | 1+(−1−i)T+3iT2 |
| 7 | 1+(−1−i)T+7iT2 |
| 11 | 1+2iT−11T2 |
| 13 | 1−2T+13T2 |
| 17 | 1−4iT−17T2 |
| 19 | 1+(5−5i)T−19iT2 |
| 23 | 1+23T2 |
| 29 | 1+(3+3i)T+29iT2 |
| 31 | 1+(−7+7i)T−31iT2 |
| 41 | 1−41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+(7+7i)T+47iT2 |
| 53 | 1+(−1+i)T−53iT2 |
| 59 | 1+(1−i)T−59iT2 |
| 61 | 1+(3−3i)T−61iT2 |
| 67 | 1+(−3+3i)T−67iT2 |
| 71 | 1+8T+71T2 |
| 73 | 1+(−9−9i)T+73iT2 |
| 79 | 1+(1−i)T−79iT2 |
| 83 | 1+(5−5i)T−83iT2 |
| 89 | 1+(−5−5i)T+89iT2 |
| 97 | 1−8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.51681049479976715515495458736, −10.72214498184088405583760294808, −9.913561959008795010014553711726, −8.550678622946176948223109707713, −7.968092296445966825260904727649, −6.49397020060739909292475709936, −5.84108691251726407248319257508, −4.10728915493454226033796375498, −3.64159708286768808345882270281, −2.32661717346622627370675610005,
1.48399474842316005654978594715, 2.91408694033091515323513245375, 4.46225439661671786023374444253, 4.99367285908152138982104726730, 6.61342180482473715016656383816, 7.49965213761600358516025530418, 8.309662155208741088838408339798, 9.173798326193050005880679000962, 10.60314747515121830693942006683, 11.43854637309066998618799233508