Properties

Label 2-370-185.68-c1-0-9
Degree 22
Conductor 370370
Sign 0.458+0.888i0.458 + 0.888i
Analytic cond. 2.954462.95446
Root an. cond. 1.718851.71885
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + (0.536 − 0.536i)3-s + 4-s + (−2.23 + 0.127i)5-s + (−0.536 + 0.536i)6-s + (0.767 − 0.767i)7-s − 8-s + 2.42i·9-s + (2.23 − 0.127i)10-s − 4.39i·11-s + (0.536 − 0.536i)12-s + 6.74·13-s + (−0.767 + 0.767i)14-s + (−1.12 + 1.26i)15-s + 16-s − 7.34i·17-s + ⋯
L(s)  = 1  − 0.707·2-s + (0.309 − 0.309i)3-s + 0.5·4-s + (−0.998 + 0.0571i)5-s + (−0.219 + 0.219i)6-s + (0.290 − 0.290i)7-s − 0.353·8-s + 0.808i·9-s + (0.705 − 0.0404i)10-s − 1.32i·11-s + (0.154 − 0.154i)12-s + 1.87·13-s + (−0.205 + 0.205i)14-s + (−0.291 + 0.326i)15-s + 0.250·16-s − 1.78i·17-s + ⋯

Functional equation

Λ(s)=(370s/2ΓC(s)L(s)=((0.458+0.888i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.458 + 0.888i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(370s/2ΓC(s+1/2)L(s)=((0.458+0.888i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.458 + 0.888i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 370370    =    25372 \cdot 5 \cdot 37
Sign: 0.458+0.888i0.458 + 0.888i
Analytic conductor: 2.954462.95446
Root analytic conductor: 1.718851.71885
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ370(253,)\chi_{370} (253, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 370, ( :1/2), 0.458+0.888i)(2,\ 370,\ (\ :1/2),\ 0.458 + 0.888i)

Particular Values

L(1)L(1) \approx 0.8023260.489132i0.802326 - 0.489132i
L(12)L(\frac12) \approx 0.8023260.489132i0.802326 - 0.489132i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+T 1 + T
5 1+(2.230.127i)T 1 + (2.23 - 0.127i)T
37 1+(6.04+0.633i)T 1 + (-6.04 + 0.633i)T
good3 1+(0.536+0.536i)T3iT2 1 + (-0.536 + 0.536i)T - 3iT^{2}
7 1+(0.767+0.767i)T7iT2 1 + (-0.767 + 0.767i)T - 7iT^{2}
11 1+4.39iT11T2 1 + 4.39iT - 11T^{2}
13 16.74T+13T2 1 - 6.74T + 13T^{2}
17 1+7.34iT17T2 1 + 7.34iT - 17T^{2}
19 1+(2.59+2.59i)T+19iT2 1 + (2.59 + 2.59i)T + 19iT^{2}
23 11.20T+23T2 1 - 1.20T + 23T^{2}
29 1+(1.251.25i)T29iT2 1 + (1.25 - 1.25i)T - 29iT^{2}
31 1+(4.14+4.14i)T+31iT2 1 + (4.14 + 4.14i)T + 31iT^{2}
41 1+4.07iT41T2 1 + 4.07iT - 41T^{2}
43 1+8.56T+43T2 1 + 8.56T + 43T^{2}
47 1+(7.68+7.68i)T47iT2 1 + (-7.68 + 7.68i)T - 47iT^{2}
53 1+(2.312.31i)T+53iT2 1 + (-2.31 - 2.31i)T + 53iT^{2}
59 1+(7.617.61i)T+59iT2 1 + (-7.61 - 7.61i)T + 59iT^{2}
61 1+(1.141.14i)T+61iT2 1 + (-1.14 - 1.14i)T + 61iT^{2}
67 1+(6.256.25i)T+67iT2 1 + (-6.25 - 6.25i)T + 67iT^{2}
71 1+5.46T+71T2 1 + 5.46T + 71T^{2}
73 1+(1.881.88i)T73iT2 1 + (1.88 - 1.88i)T - 73iT^{2}
79 1+(5.13+5.13i)T+79iT2 1 + (5.13 + 5.13i)T + 79iT^{2}
83 1+(0.5700.570i)T+83iT2 1 + (-0.570 - 0.570i)T + 83iT^{2}
89 1+(7.547.54i)T89iT2 1 + (7.54 - 7.54i)T - 89iT^{2}
97 15.39iT97T2 1 - 5.39iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.15942386887266794319881225171, −10.63888344079404118892256147635, −8.976016077829635454927211228455, −8.497724961830795629062060478467, −7.65547178197472295655974375457, −6.84023544553937522234617642602, −5.48312056699927288382531036098, −3.96180408119657111913556146283, −2.76886333314809316531144963513, −0.865287218671018101826048689564, 1.57498701703147038738978322923, 3.50279409985366115401881304839, 4.25182232808081372223240095544, 6.01441385892366341713050377685, 6.94958425922972055595891682828, 8.307635307273956549335690547932, 8.486896700602345151557878900724, 9.651768416117621174174194272689, 10.63540929523805678505360724096, 11.36556820883056863407576363104

Graph of the ZZ-function along the critical line