L(s) = 1 | + (0.5 − 0.866i)2-s + (1.79 − 1.03i)3-s + (−0.499 − 0.866i)4-s + (1.99 − 1.00i)5-s − 2.06i·6-s + (1.25 − 0.725i)7-s − 0.999·8-s + (0.638 − 1.10i)9-s + (0.130 − 2.23i)10-s − 5.11·11-s + (−1.79 − 1.03i)12-s + (2.79 + 4.84i)13-s − 1.45i·14-s + (2.54 − 3.86i)15-s + (−0.5 + 0.866i)16-s + (−2.19 + 3.80i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (1.03 − 0.596i)3-s + (−0.249 − 0.433i)4-s + (0.893 − 0.448i)5-s − 0.844i·6-s + (0.474 − 0.274i)7-s − 0.353·8-s + (0.212 − 0.368i)9-s + (0.0413 − 0.705i)10-s − 1.54·11-s + (−0.516 − 0.298i)12-s + (0.775 + 1.34i)13-s − 0.387i·14-s + (0.656 − 0.997i)15-s + (−0.125 + 0.216i)16-s + (−0.532 + 0.921i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.0608+0.998i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.0608+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.0608+0.998i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(249,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.0608+0.998i)
|
Particular Values
L(1) |
≈ |
1.71278−1.61157i |
L(21) |
≈ |
1.71278−1.61157i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 5 | 1+(−1.99+1.00i)T |
| 37 | 1+(−0.667+6.04i)T |
good | 3 | 1+(−1.79+1.03i)T+(1.5−2.59i)T2 |
| 7 | 1+(−1.25+0.725i)T+(3.5−6.06i)T2 |
| 11 | 1+5.11T+11T2 |
| 13 | 1+(−2.79−4.84i)T+(−6.5+11.2i)T2 |
| 17 | 1+(2.19−3.80i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.736−0.425i)T+(9.5−16.4i)T2 |
| 23 | 1+1.02T+23T2 |
| 29 | 1−3.13iT−29T2 |
| 31 | 1+6.98iT−31T2 |
| 41 | 1+(5.10+8.84i)T+(−20.5+35.5i)T2 |
| 43 | 1+3.37T+43T2 |
| 47 | 1−3.87iT−47T2 |
| 53 | 1+(−9.19−5.30i)T+(26.5+45.8i)T2 |
| 59 | 1+(−1.97−1.14i)T+(29.5+51.0i)T2 |
| 61 | 1+(0.743−0.429i)T+(30.5−52.8i)T2 |
| 67 | 1+(−9.48+5.47i)T+(33.5−58.0i)T2 |
| 71 | 1+(4.71+8.17i)T+(−35.5+61.4i)T2 |
| 73 | 1+10.2iT−73T2 |
| 79 | 1+(5.04−2.91i)T+(39.5−68.4i)T2 |
| 83 | 1+(0.0647+0.0373i)T+(41.5+71.8i)T2 |
| 89 | 1+(−12.1−6.99i)T+(44.5+77.0i)T2 |
| 97 | 1−2.26T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.04511310295028154055783448654, −10.40803378034916027856048621987, −9.181824152245541333931057140958, −8.566537974940951837622286941019, −7.61799774677143613672069094420, −6.27837572322901815651390078617, −5.15684423151654868919069025401, −3.95353597022706970669004707334, −2.39616603133974675002026766092, −1.72644212642618854903264326448,
2.53976605369694007338187521746, 3.27502055199344352323306096304, 4.90002759560546124507440838448, 5.63335548702366680044480275006, 6.87744868719631774921045313026, 8.193621011692395215483279066023, 8.517928955799831368128188486144, 9.823563956284727607524546293077, 10.37512521450204654439994929029, 11.53540388076746514614202506472