L(s) = 1 | + (−0.939 − 0.342i)2-s + (−0.436 + 0.159i)3-s + (0.766 + 0.642i)4-s + (−0.173 + 0.984i)5-s + 0.465·6-s + (0.593 − 3.36i)7-s + (−0.500 − 0.866i)8-s + (−2.13 + 1.78i)9-s + (0.5 − 0.866i)10-s + (−3.22 − 5.58i)11-s + (−0.436 − 0.159i)12-s + (3.08 + 2.58i)13-s + (−1.70 + 2.95i)14-s + (−0.0807 − 0.457i)15-s + (0.173 + 0.984i)16-s + (2.55 − 2.14i)17-s + ⋯ |
L(s) = 1 | + (−0.664 − 0.241i)2-s + (−0.252 + 0.0918i)3-s + (0.383 + 0.321i)4-s + (−0.0776 + 0.440i)5-s + 0.189·6-s + (0.224 − 1.27i)7-s + (−0.176 − 0.306i)8-s + (−0.710 + 0.596i)9-s + (0.158 − 0.273i)10-s + (−0.972 − 1.68i)11-s + (−0.126 − 0.0459i)12-s + (0.855 + 0.717i)13-s + (−0.456 + 0.790i)14-s + (−0.0208 − 0.118i)15-s + (0.0434 + 0.246i)16-s + (0.620 − 0.520i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.0216+0.999i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.0216+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.0216+0.999i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.0216+0.999i)
|
Particular Values
L(1) |
≈ |
0.502459−0.513456i |
L(21) |
≈ |
0.502459−0.513456i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.939+0.342i)T |
| 5 | 1+(0.173−0.984i)T |
| 37 | 1+(3.52+4.95i)T |
good | 3 | 1+(0.436−0.159i)T+(2.29−1.92i)T2 |
| 7 | 1+(−0.593+3.36i)T+(−6.57−2.39i)T2 |
| 11 | 1+(3.22+5.58i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−3.08−2.58i)T+(2.25+12.8i)T2 |
| 17 | 1+(−2.55+2.14i)T+(2.95−16.7i)T2 |
| 19 | 1+(−1.82+0.662i)T+(14.5−12.2i)T2 |
| 23 | 1+(−3.97+6.88i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.45+7.71i)T+(−14.5+25.1i)T2 |
| 31 | 1+4.45T+31T2 |
| 41 | 1+(−2.06−1.73i)T+(7.11+40.3i)T2 |
| 43 | 1−5.37T+43T2 |
| 47 | 1+(4.77−8.26i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.523+2.96i)T+(−49.8+18.1i)T2 |
| 59 | 1+(0.145+0.824i)T+(−55.4+20.1i)T2 |
| 61 | 1+(−2.44−2.04i)T+(10.5+60.0i)T2 |
| 67 | 1+(−0.828+4.69i)T+(−62.9−22.9i)T2 |
| 71 | 1+(−5.83+2.12i)T+(54.3−45.6i)T2 |
| 73 | 1−11.3T+73T2 |
| 79 | 1+(2.17−12.3i)T+(−74.2−27.0i)T2 |
| 83 | 1+(5.12−4.29i)T+(14.4−81.7i)T2 |
| 89 | 1+(0.0213+0.121i)T+(−83.6+30.4i)T2 |
| 97 | 1+(3.31−5.74i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.87815671284538619134491355795, −10.72699767071200686267306380273, −9.366696161968068302295114416645, −8.255110136478101886656921705140, −7.66097932309995832100064516800, −6.48813069123643767229763002685, −5.39976560098598996307728070234, −3.85762411464769587660311433143, −2.70700301349335643888111249516, −0.63301431574460952776559645198,
1.68004025274204825913817268634, 3.23885727794462141764908250577, 5.36787892550354934939439470301, 5.53698044289636938064350766188, 7.06736238182779155764422799073, 8.014129681662082458346822204060, 8.881702931830910520830450284531, 9.582823777831799778896829743296, 10.67085117084674213856664509511, 11.62426465879838572806151469499