L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.241 − 0.900i)3-s + (−0.499 + 0.866i)4-s + (2.17 + 0.519i)5-s + (−0.658 + 0.658i)6-s + (0.596 + 2.22i)7-s + 0.999·8-s + (1.84 − 1.06i)9-s + (−0.637 − 2.14i)10-s + 4.55i·11-s + (0.900 + 0.241i)12-s + (−2.24 + 3.88i)13-s + (1.62 − 1.62i)14-s + (−0.0572 − 2.08i)15-s + (−0.5 − 0.866i)16-s + (0.121 − 0.0699i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.139 − 0.519i)3-s + (−0.249 + 0.433i)4-s + (0.972 + 0.232i)5-s + (−0.269 + 0.269i)6-s + (0.225 + 0.841i)7-s + 0.353·8-s + (0.615 − 0.355i)9-s + (−0.201 − 0.677i)10-s + 1.37i·11-s + (0.259 + 0.0696i)12-s + (−0.622 + 1.07i)13-s + (0.435 − 0.435i)14-s + (−0.0147 − 0.537i)15-s + (−0.125 − 0.216i)16-s + (0.0293 − 0.0169i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 + 0.322i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.946 + 0.322i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28191 - 0.212670i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28191 - 0.212670i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (-2.17 - 0.519i)T \) |
| 37 | \( 1 + (2.51 + 5.53i)T \) |
good | 3 | \( 1 + (0.241 + 0.900i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (-0.596 - 2.22i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 - 4.55iT - 11T^{2} \) |
| 13 | \( 1 + (2.24 - 3.88i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.121 + 0.0699i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.17 + 1.11i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 0.446T + 23T^{2} \) |
| 29 | \( 1 + (-4.72 + 4.72i)T - 29iT^{2} \) |
| 31 | \( 1 + (4.75 + 4.75i)T + 31iT^{2} \) |
| 41 | \( 1 + (-1.14 - 0.659i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 9.82T + 43T^{2} \) |
| 47 | \( 1 + (-4.73 + 4.73i)T - 47iT^{2} \) |
| 53 | \( 1 + (0.694 - 2.59i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.78 - 10.3i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-10.7 + 2.88i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (8.53 - 2.28i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (7.49 - 12.9i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.51 + 3.51i)T - 73iT^{2} \) |
| 79 | \( 1 + (-8.56 + 2.29i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (-0.647 + 2.41i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (17.1 + 4.58i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + 11.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.61298215238718135634583418485, −10.17279741327359662512949360756, −9.630988702798691824637141300505, −8.935964792673732921134572024579, −7.42523630346804766148505342898, −6.80181834924241748686430076424, −5.50032122260540275780474743813, −4.32271886074056810325727401985, −2.45678291400891107132686192695, −1.69476201171934995485527908276,
1.19383863532323832498297540449, 3.31039309656927263989363384343, 4.91596063157079365099296687593, 5.47574017364619384850717320524, 6.70948478861976866827801117838, 7.72159650729549086687091000952, 8.669817493296787716749204127620, 9.738956786600275880682425028761, 10.37721713794618902336258157906, 10.95224385634253901195735672682