L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.241 − 0.900i)3-s + (−0.499 + 0.866i)4-s + (2.17 + 0.519i)5-s + (−0.658 + 0.658i)6-s + (0.596 + 2.22i)7-s + 0.999·8-s + (1.84 − 1.06i)9-s + (−0.637 − 2.14i)10-s + 4.55i·11-s + (0.900 + 0.241i)12-s + (−2.24 + 3.88i)13-s + (1.62 − 1.62i)14-s + (−0.0572 − 2.08i)15-s + (−0.5 − 0.866i)16-s + (0.121 − 0.0699i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.139 − 0.519i)3-s + (−0.249 + 0.433i)4-s + (0.972 + 0.232i)5-s + (−0.269 + 0.269i)6-s + (0.225 + 0.841i)7-s + 0.353·8-s + (0.615 − 0.355i)9-s + (−0.201 − 0.677i)10-s + 1.37i·11-s + (0.259 + 0.0696i)12-s + (−0.622 + 1.07i)13-s + (0.435 − 0.435i)14-s + (−0.0147 − 0.537i)15-s + (−0.125 − 0.216i)16-s + (0.0293 − 0.0169i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.946+0.322i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.946+0.322i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.946+0.322i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.946+0.322i)
|
Particular Values
L(1) |
≈ |
1.28191−0.212670i |
L(21) |
≈ |
1.28191−0.212670i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 5 | 1+(−2.17−0.519i)T |
| 37 | 1+(2.51+5.53i)T |
good | 3 | 1+(0.241+0.900i)T+(−2.59+1.5i)T2 |
| 7 | 1+(−0.596−2.22i)T+(−6.06+3.5i)T2 |
| 11 | 1−4.55iT−11T2 |
| 13 | 1+(2.24−3.88i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−0.121+0.0699i)T+(8.5−14.7i)T2 |
| 19 | 1+(−4.17+1.11i)T+(16.4−9.5i)T2 |
| 23 | 1−0.446T+23T2 |
| 29 | 1+(−4.72+4.72i)T−29iT2 |
| 31 | 1+(4.75+4.75i)T+31iT2 |
| 41 | 1+(−1.14−0.659i)T+(20.5+35.5i)T2 |
| 43 | 1+9.82T+43T2 |
| 47 | 1+(−4.73+4.73i)T−47iT2 |
| 53 | 1+(0.694−2.59i)T+(−45.8−26.5i)T2 |
| 59 | 1+(2.78−10.3i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−10.7+2.88i)T+(52.8−30.5i)T2 |
| 67 | 1+(8.53−2.28i)T+(58.0−33.5i)T2 |
| 71 | 1+(7.49−12.9i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−3.51+3.51i)T−73iT2 |
| 79 | 1+(−8.56+2.29i)T+(68.4−39.5i)T2 |
| 83 | 1+(−0.647+2.41i)T+(−71.8−41.5i)T2 |
| 89 | 1+(17.1+4.58i)T+(77.0+44.5i)T2 |
| 97 | 1+11.6iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.61298215238718135634583418485, −10.17279741327359662512949360756, −9.630988702798691824637141300505, −8.935964792673732921134572024579, −7.42523630346804766148505342898, −6.80181834924241748686430076424, −5.50032122260540275780474743813, −4.32271886074056810325727401985, −2.45678291400891107132686192695, −1.69476201171934995485527908276,
1.19383863532323832498297540449, 3.31039309656927263989363384343, 4.91596063157079365099296687593, 5.47574017364619384850717320524, 6.70948478861976866827801117838, 7.72159650729549086687091000952, 8.669817493296787716749204127620, 9.738956786600275880682425028761, 10.37721713794618902336258157906, 10.95224385634253901195735672682