L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.803 − 2.99i)3-s + (0.499 + 0.866i)4-s + (−0.0397 − 2.23i)5-s + (−2.19 + 2.19i)6-s + (−0.886 + 3.30i)7-s − 0.999i·8-s + (−5.75 − 3.32i)9-s + (−1.08 + 1.95i)10-s − 4.03i·11-s + (2.99 − 0.803i)12-s + (−3.29 + 1.90i)13-s + (2.42 − 2.42i)14-s + (−6.73 − 1.67i)15-s + (−0.5 + 0.866i)16-s + (1.42 − 2.47i)17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.464 − 1.73i)3-s + (0.249 + 0.433i)4-s + (−0.0177 − 0.999i)5-s + (−0.896 + 0.896i)6-s + (−0.335 + 1.25i)7-s − 0.353i·8-s + (−1.91 − 1.10i)9-s + (−0.342 + 0.618i)10-s − 1.21i·11-s + (0.865 − 0.232i)12-s + (−0.914 + 0.527i)13-s + (0.647 − 0.647i)14-s + (−1.73 − 0.433i)15-s + (−0.125 + 0.216i)16-s + (0.346 − 0.600i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0568i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0256792 + 0.903373i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0256792 + 0.903373i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 + (0.0397 + 2.23i)T \) |
| 37 | \( 1 + (-5.52 - 2.54i)T \) |
good | 3 | \( 1 + (-0.803 + 2.99i)T + (-2.59 - 1.5i)T^{2} \) |
| 7 | \( 1 + (0.886 - 3.30i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + 4.03iT - 11T^{2} \) |
| 13 | \( 1 + (3.29 - 1.90i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.42 + 2.47i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.23 + 4.61i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 5.69iT - 23T^{2} \) |
| 29 | \( 1 + (-2.30 + 2.30i)T - 29iT^{2} \) |
| 31 | \( 1 + (-1.95 - 1.95i)T + 31iT^{2} \) |
| 41 | \( 1 + (-4.19 + 2.42i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + 8.10iT - 43T^{2} \) |
| 47 | \( 1 + (5.47 + 5.47i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.82 - 6.82i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (4.59 - 1.23i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.89 + 10.8i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-5.28 - 1.41i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (5.05 + 8.75i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.11 - 7.11i)T + 73iT^{2} \) |
| 79 | \( 1 + (-2.88 + 10.7i)T + (-68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (0.739 + 2.76i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (-3.14 - 11.7i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 - 10.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46189544736164038972876425959, −9.476916152826930797540415290879, −8.992697390517093035468174701529, −8.234898829064699046129754235565, −7.41117146194210173423161120213, −6.30971889451603803112481111465, −5.30464575393977941898669869359, −3.07315965799864838751772150160, −2.12381037210825388510761882544, −0.69180518356468943798008916151,
2.68513261336204061322058028759, 3.87369325150179591502976041261, 4.75899082066756781044001734818, 6.21264744963204654907233773929, 7.40892336346333059870304430239, 8.098355937011294083817931604201, 9.558822955344094687592774331921, 10.16072022526853185721168758741, 10.29556101280719951970777790102, 11.29298713227088920845123265486