L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.803 − 2.99i)3-s + (0.499 + 0.866i)4-s + (−0.0397 − 2.23i)5-s + (−2.19 + 2.19i)6-s + (−0.886 + 3.30i)7-s − 0.999i·8-s + (−5.75 − 3.32i)9-s + (−1.08 + 1.95i)10-s − 4.03i·11-s + (2.99 − 0.803i)12-s + (−3.29 + 1.90i)13-s + (2.42 − 2.42i)14-s + (−6.73 − 1.67i)15-s + (−0.5 + 0.866i)16-s + (1.42 − 2.47i)17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.464 − 1.73i)3-s + (0.249 + 0.433i)4-s + (−0.0177 − 0.999i)5-s + (−0.896 + 0.896i)6-s + (−0.335 + 1.25i)7-s − 0.353i·8-s + (−1.91 − 1.10i)9-s + (−0.342 + 0.618i)10-s − 1.21i·11-s + (0.865 − 0.232i)12-s + (−0.914 + 0.527i)13-s + (0.647 − 0.647i)14-s + (−1.73 − 0.433i)15-s + (−0.125 + 0.216i)16-s + (0.346 − 0.600i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.998−0.0568i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.998−0.0568i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.998−0.0568i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(347,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.998−0.0568i)
|
Particular Values
L(1) |
≈ |
0.0256792+0.903373i |
L(21) |
≈ |
0.0256792+0.903373i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 5 | 1+(0.0397+2.23i)T |
| 37 | 1+(−5.52−2.54i)T |
good | 3 | 1+(−0.803+2.99i)T+(−2.59−1.5i)T2 |
| 7 | 1+(0.886−3.30i)T+(−6.06−3.5i)T2 |
| 11 | 1+4.03iT−11T2 |
| 13 | 1+(3.29−1.90i)T+(6.5−11.2i)T2 |
| 17 | 1+(−1.42+2.47i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.23+4.61i)T+(−16.4−9.5i)T2 |
| 23 | 1−5.69iT−23T2 |
| 29 | 1+(−2.30+2.30i)T−29iT2 |
| 31 | 1+(−1.95−1.95i)T+31iT2 |
| 41 | 1+(−4.19+2.42i)T+(20.5−35.5i)T2 |
| 43 | 1+8.10iT−43T2 |
| 47 | 1+(5.47+5.47i)T+47iT2 |
| 53 | 1+(−1.82−6.82i)T+(−45.8+26.5i)T2 |
| 59 | 1+(4.59−1.23i)T+(51.0−29.5i)T2 |
| 61 | 1+(−2.89+10.8i)T+(−52.8−30.5i)T2 |
| 67 | 1+(−5.28−1.41i)T+(58.0+33.5i)T2 |
| 71 | 1+(5.05+8.75i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−7.11−7.11i)T+73iT2 |
| 79 | 1+(−2.88+10.7i)T+(−68.4−39.5i)T2 |
| 83 | 1+(0.739+2.76i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−3.14−11.7i)T+(−77.0+44.5i)T2 |
| 97 | 1−10.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.46189544736164038972876425959, −9.476916152826930797540415290879, −8.992697390517093035468174701529, −8.234898829064699046129754235565, −7.41117146194210173423161120213, −6.30971889451603803112481111465, −5.30464575393977941898669869359, −3.07315965799864838751772150160, −2.12381037210825388510761882544, −0.69180518356468943798008916151,
2.68513261336204061322058028759, 3.87369325150179591502976041261, 4.75899082066756781044001734818, 6.21264744963204654907233773929, 7.40892336346333059870304430239, 8.098355937011294083817931604201, 9.558822955344094687592774331921, 10.16072022526853185721168758741, 10.29556101280719951970777790102, 11.29298713227088920845123265486