L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.392 + 1.46i)3-s + (0.499 + 0.866i)4-s + (2.15 − 0.582i)5-s + (1.07 − 1.07i)6-s + (−0.155 + 0.578i)7-s − 0.999i·8-s + (0.603 + 0.348i)9-s + (−2.16 − 0.575i)10-s − 2.03i·11-s + (−1.46 + 0.392i)12-s + (3.91 − 2.26i)13-s + (0.423 − 0.423i)14-s + (0.00519 + 3.39i)15-s + (−0.5 + 0.866i)16-s + (−3.22 + 5.58i)17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.226 + 0.846i)3-s + (0.249 + 0.433i)4-s + (0.965 − 0.260i)5-s + (0.438 − 0.438i)6-s + (−0.0586 + 0.218i)7-s − 0.353i·8-s + (0.201 + 0.116i)9-s + (−0.683 − 0.181i)10-s − 0.613i·11-s + (−0.423 + 0.113i)12-s + (1.08 − 0.626i)13-s + (0.113 − 0.113i)14-s + (0.00134 + 0.876i)15-s + (−0.125 + 0.216i)16-s + (−0.782 + 1.35i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.866−0.499i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.866−0.499i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.866−0.499i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(347,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.866−0.499i)
|
Particular Values
L(1) |
≈ |
1.12072+0.299925i |
L(21) |
≈ |
1.12072+0.299925i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 5 | 1+(−2.15+0.582i)T |
| 37 | 1+(0.586−6.05i)T |
good | 3 | 1+(0.392−1.46i)T+(−2.59−1.5i)T2 |
| 7 | 1+(0.155−0.578i)T+(−6.06−3.5i)T2 |
| 11 | 1+2.03iT−11T2 |
| 13 | 1+(−3.91+2.26i)T+(6.5−11.2i)T2 |
| 17 | 1+(3.22−5.58i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.311+1.16i)T+(−16.4−9.5i)T2 |
| 23 | 1−4.39iT−23T2 |
| 29 | 1+(−5.43+5.43i)T−29iT2 |
| 31 | 1+(−5.48−5.48i)T+31iT2 |
| 41 | 1+(1.10−0.637i)T+(20.5−35.5i)T2 |
| 43 | 1+3.83iT−43T2 |
| 47 | 1+(3.13+3.13i)T+47iT2 |
| 53 | 1+(−0.0992−0.370i)T+(−45.8+26.5i)T2 |
| 59 | 1+(10.2−2.74i)T+(51.0−29.5i)T2 |
| 61 | 1+(−2.46+9.19i)T+(−52.8−30.5i)T2 |
| 67 | 1+(0.762+0.204i)T+(58.0+33.5i)T2 |
| 71 | 1+(8.36+14.4i)T+(−35.5+61.4i)T2 |
| 73 | 1+(3.81+3.81i)T+73iT2 |
| 79 | 1+(3.16−11.8i)T+(−68.4−39.5i)T2 |
| 83 | 1+(−0.261−0.974i)T+(−71.8+41.5i)T2 |
| 89 | 1+(2.11+7.88i)T+(−77.0+44.5i)T2 |
| 97 | 1+15.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.03980624239536191493509327200, −10.48994812804442072418717643821, −9.809684698718677408322655539572, −8.824738414151242583639113290228, −8.196118789434269480066457389312, −6.52235634787424048203468229067, −5.69830625953032433156244366103, −4.45637739941817032854969133438, −3.15497929333184623340605459469, −1.51951803219766543862604745407,
1.20655725215176595612969497953, 2.46414236861265247603398714849, 4.52251403219934752794624015610, 5.96731499121195121756077058981, 6.71266378779063793661956644507, 7.25286968081813085529163602062, 8.592793176099152788864117259841, 9.450018023096190922615914325846, 10.27024660714032406195604013966, 11.22674815534194572226889783365