L(s) = 1 | + (0.642 + 0.766i)2-s + (−1.89 − 1.58i)3-s + (−0.173 + 0.984i)4-s + (0.342 + 0.939i)5-s − 2.46i·6-s + (2.50 − 0.911i)7-s + (−0.866 + 0.500i)8-s + (0.537 + 3.04i)9-s + (−0.5 + 0.866i)10-s + (−1.28 − 2.23i)11-s + (1.89 − 1.58i)12-s + (2.22 + 0.392i)13-s + (2.30 + 1.33i)14-s + (0.844 − 2.31i)15-s + (−0.939 − 0.342i)16-s + (5.64 − 0.995i)17-s + ⋯ |
L(s) = 1 | + (0.454 + 0.541i)2-s + (−1.09 − 0.916i)3-s + (−0.0868 + 0.492i)4-s + (0.152 + 0.420i)5-s − 1.00i·6-s + (0.946 − 0.344i)7-s + (−0.306 + 0.176i)8-s + (0.179 + 1.01i)9-s + (−0.158 + 0.273i)10-s + (−0.388 − 0.672i)11-s + (0.545 − 0.458i)12-s + (0.617 + 0.108i)13-s + (0.616 + 0.356i)14-s + (0.217 − 0.598i)15-s + (−0.234 − 0.0855i)16-s + (1.36 − 0.241i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.984+0.173i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.984+0.173i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.984+0.173i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(321,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.984+0.173i)
|
Particular Values
L(1) |
≈ |
1.35800−0.118739i |
L(21) |
≈ |
1.35800−0.118739i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.642−0.766i)T |
| 5 | 1+(−0.342−0.939i)T |
| 37 | 1+(−0.874−6.01i)T |
good | 3 | 1+(1.89+1.58i)T+(0.520+2.95i)T2 |
| 7 | 1+(−2.50+0.911i)T+(5.36−4.49i)T2 |
| 11 | 1+(1.28+2.23i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2.22−0.392i)T+(12.2+4.44i)T2 |
| 17 | 1+(−5.64+0.995i)T+(15.9−5.81i)T2 |
| 19 | 1+(−3.50+4.17i)T+(−3.29−18.7i)T2 |
| 23 | 1+(−4.45−2.57i)T+(11.5+19.9i)T2 |
| 29 | 1+(−1.31+0.757i)T+(14.5−25.1i)T2 |
| 31 | 1+9.01iT−31T2 |
| 41 | 1+(0.500−2.83i)T+(−38.5−14.0i)T2 |
| 43 | 1+4.92iT−43T2 |
| 47 | 1+(5.13−8.88i)T+(−23.5−40.7i)T2 |
| 53 | 1+(10.2+3.72i)T+(40.6+34.0i)T2 |
| 59 | 1+(0.985−2.70i)T+(−45.1−37.9i)T2 |
| 61 | 1+(8.49+1.49i)T+(57.3+20.8i)T2 |
| 67 | 1+(0.287−0.104i)T+(51.3−43.0i)T2 |
| 71 | 1+(3.30+2.77i)T+(12.3+69.9i)T2 |
| 73 | 1−2.58T+73T2 |
| 79 | 1+(−3.01−8.28i)T+(−60.5+50.7i)T2 |
| 83 | 1+(−0.982−5.57i)T+(−77.9+28.3i)T2 |
| 89 | 1+(4.18−11.4i)T+(−68.1−57.2i)T2 |
| 97 | 1+(−12.7−7.38i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27686704409387808662934691087, −11.08966033279797379401586592453, −9.549673146426650167878569391221, −8.034577410694112233259722377844, −7.48645307948768043563038789665, −6.48188289016457929769952186142, −5.66129437742363820687891123139, −4.85689670168182003072064548824, −3.15977368784875660623299049689, −1.15026135678703671053536338190,
1.45916777376060705770397715150, 3.43885789833133695254362011277, 4.79421635437769374818552421796, 5.19178079403347332977954137278, 6.09009172323459240331366519103, 7.72730372004526148120791012744, 8.909084815034889076196991544730, 10.05020446112988280212389503195, 10.54071896299092404500637926038, 11.43952723195964215830781836666