L(s) = 1 | + (0.984 − 0.173i)2-s + (0.168 − 0.956i)3-s + (0.939 − 0.342i)4-s + (−0.642 + 0.766i)5-s − 0.971i·6-s + (2.87 + 2.41i)7-s + (0.866 − 0.5i)8-s + (1.93 + 0.703i)9-s + (−0.5 + 0.866i)10-s + (−0.877 − 1.51i)11-s + (−0.168 − 0.956i)12-s + (−0.963 − 2.64i)13-s + (3.25 + 1.87i)14-s + (0.624 + 0.744i)15-s + (0.766 − 0.642i)16-s + (−0.345 + 0.948i)17-s + ⋯ |
L(s) = 1 | + (0.696 − 0.122i)2-s + (0.0973 − 0.552i)3-s + (0.469 − 0.171i)4-s + (−0.287 + 0.342i)5-s − 0.396i·6-s + (1.08 + 0.912i)7-s + (0.306 − 0.176i)8-s + (0.644 + 0.234i)9-s + (−0.158 + 0.273i)10-s + (−0.264 − 0.458i)11-s + (−0.0486 − 0.276i)12-s + (−0.267 − 0.733i)13-s + (0.868 + 0.501i)14-s + (0.161 + 0.192i)15-s + (0.191 − 0.160i)16-s + (−0.0837 + 0.230i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.940+0.339i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.940+0.339i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.940+0.339i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.940+0.339i)
|
Particular Values
L(1) |
≈ |
2.17764−0.380869i |
L(21) |
≈ |
2.17764−0.380869i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.984+0.173i)T |
| 5 | 1+(0.642−0.766i)T |
| 37 | 1+(0.584+6.05i)T |
good | 3 | 1+(−0.168+0.956i)T+(−2.81−1.02i)T2 |
| 7 | 1+(−2.87−2.41i)T+(1.21+6.89i)T2 |
| 11 | 1+(0.877+1.51i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.963+2.64i)T+(−9.95+8.35i)T2 |
| 17 | 1+(0.345−0.948i)T+(−13.0−10.9i)T2 |
| 19 | 1+(0.438+0.0772i)T+(17.8+6.49i)T2 |
| 23 | 1+(1.02+0.591i)T+(11.5+19.9i)T2 |
| 29 | 1+(3.39−1.95i)T+(14.5−25.1i)T2 |
| 31 | 1+2.93iT−31T2 |
| 41 | 1+(2.42−0.883i)T+(31.4−26.3i)T2 |
| 43 | 1−10.8iT−43T2 |
| 47 | 1+(6.14−10.6i)T+(−23.5−40.7i)T2 |
| 53 | 1+(6.78−5.69i)T+(9.20−52.1i)T2 |
| 59 | 1+(4.45+5.31i)T+(−10.2+58.1i)T2 |
| 61 | 1+(4.64+12.7i)T+(−46.7+39.2i)T2 |
| 67 | 1+(−6.11−5.12i)T+(11.6+65.9i)T2 |
| 71 | 1+(−0.190+1.08i)T+(−66.7−24.2i)T2 |
| 73 | 1−11.3T+73T2 |
| 79 | 1+(7.08−8.44i)T+(−13.7−77.7i)T2 |
| 83 | 1+(5.87+2.13i)T+(63.5+53.3i)T2 |
| 89 | 1+(1.04+1.24i)T+(−15.4+87.6i)T2 |
| 97 | 1+(2.18+1.26i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.32605657500742656357687470757, −10.87496801397189275824835741343, −9.592362533773135777607428020459, −8.133046399075437869464673794027, −7.73239512143712856159375602097, −6.45107919474587102414303994239, −5.43167383791329942541524351283, −4.44604822523622394025811858446, −2.93244358304068360591904276489, −1.75903362107312033246205611921,
1.73702934092681793827620009347, 3.69972810706674674728196066273, 4.50008391791561609543139188109, 5.13635543632072770866849474149, 6.82760414407908321578359034415, 7.51065890804745954062793454772, 8.577156346355801407829286268841, 9.800227753211635698394788905017, 10.60000487232691161408545680056, 11.54040574379455294179020896262