L(s) = 1 | + (−0.984 + 0.173i)2-s + (2.61 + 0.460i)3-s + (0.939 − 0.342i)4-s + (1.38 + 1.75i)5-s − 2.65·6-s + (2.09 − 2.49i)7-s + (−0.866 + 0.5i)8-s + (3.79 + 1.38i)9-s + (−1.66 − 1.48i)10-s + (0.0622 + 0.107i)11-s + (2.61 − 0.460i)12-s + (−2.13 − 5.85i)13-s + (−1.62 + 2.81i)14-s + (2.81 + 5.22i)15-s + (0.766 − 0.642i)16-s + (−1.61 + 4.42i)17-s + ⋯ |
L(s) = 1 | + (−0.696 + 0.122i)2-s + (1.50 + 0.265i)3-s + (0.469 − 0.171i)4-s + (0.619 + 0.784i)5-s − 1.08·6-s + (0.790 − 0.941i)7-s + (−0.306 + 0.176i)8-s + (1.26 + 0.460i)9-s + (−0.527 − 0.470i)10-s + (0.0187 + 0.0324i)11-s + (0.754 − 0.132i)12-s + (−0.591 − 1.62i)13-s + (−0.434 + 0.753i)14-s + (0.726 + 1.34i)15-s + (0.191 − 0.160i)16-s + (−0.390 + 1.07i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.934−0.355i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.934−0.355i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.934−0.355i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.934−0.355i)
|
Particular Values
L(1) |
≈ |
1.75895+0.323265i |
L(21) |
≈ |
1.75895+0.323265i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.984−0.173i)T |
| 5 | 1+(−1.38−1.75i)T |
| 37 | 1+(−2.12−5.69i)T |
good | 3 | 1+(−2.61−0.460i)T+(2.81+1.02i)T2 |
| 7 | 1+(−2.09+2.49i)T+(−1.21−6.89i)T2 |
| 11 | 1+(−0.0622−0.107i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2.13+5.85i)T+(−9.95+8.35i)T2 |
| 17 | 1+(1.61−4.42i)T+(−13.0−10.9i)T2 |
| 19 | 1+(0.307−1.74i)T+(−17.8−6.49i)T2 |
| 23 | 1+(7.34+4.23i)T+(11.5+19.9i)T2 |
| 29 | 1+(−1.23−2.13i)T+(−14.5+25.1i)T2 |
| 31 | 1+5.35T+31T2 |
| 41 | 1+(3.81−1.38i)T+(31.4−26.3i)T2 |
| 43 | 1+2.22iT−43T2 |
| 47 | 1+(−8.31−4.80i)T+(23.5+40.7i)T2 |
| 53 | 1+(−4.66−5.56i)T+(−9.20+52.1i)T2 |
| 59 | 1+(−5.60+4.70i)T+(10.2−58.1i)T2 |
| 61 | 1+(−0.127+0.0462i)T+(46.7−39.2i)T2 |
| 67 | 1+(6.98−8.32i)T+(−11.6−65.9i)T2 |
| 71 | 1+(−1.01+5.74i)T+(−66.7−24.2i)T2 |
| 73 | 1+9.15iT−73T2 |
| 79 | 1+(−0.898−0.754i)T+(13.7+77.7i)T2 |
| 83 | 1+(1.33−3.65i)T+(−63.5−53.3i)T2 |
| 89 | 1+(11.3−9.50i)T+(15.4−87.6i)T2 |
| 97 | 1+(1.40+0.809i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81744315302525767448282741697, −10.35952803550849820534173664382, −9.732169199813271068089074807305, −8.465249644412618937050174093366, −7.950642644941947761303482891098, −7.15628505838423070672434262261, −5.81556043884772754359266464452, −4.13449708787836332660187771950, −2.94532079903748788895229529376, −1.84178081612819763346637083878,
1.91640039576920458192777725393, 2.32919952283459082063402924067, 4.16490717381568437128627179879, 5.49602466657445896487993514239, 6.99450601257470302379000467820, 7.918513146723409453580539755628, 8.880875697025969321394912295271, 9.125455717099209767866990462599, 9.897845851207722302704265735314, 11.55669561996159780237266505540