L(s) = 1 | + 3i·3-s + 3i·7-s − 6·9-s + 5·11-s + 2i·13-s − 4i·17-s + 4·19-s − 9·21-s + 6i·23-s − 9i·27-s − 6·29-s − 4·31-s + 15i·33-s + i·37-s − 6·39-s + ⋯ |
L(s) = 1 | + 1.73i·3-s + 1.13i·7-s − 2·9-s + 1.50·11-s + 0.554i·13-s − 0.970i·17-s + 0.917·19-s − 1.96·21-s + 1.25i·23-s − 1.73i·27-s − 1.11·29-s − 0.718·31-s + 2.61i·33-s + 0.164i·37-s − 0.960·39-s + ⋯ |
Λ(s)=(=(3700s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(3700s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3700
= 22⋅52⋅37
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
29.5446 |
Root analytic conductor: |
5.43549 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3700(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3700, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.535127736 |
L(21) |
≈ |
1.535127736 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 37 | 1−iT |
good | 3 | 1−3iT−3T2 |
| 7 | 1−3iT−7T2 |
| 11 | 1−5T+11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1+4iT−17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1−6iT−23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1+4T+31T2 |
| 41 | 1+9T+41T2 |
| 43 | 1−10iT−43T2 |
| 47 | 1−11iT−47T2 |
| 53 | 1+11iT−53T2 |
| 59 | 1−8T+59T2 |
| 61 | 1+8T+61T2 |
| 67 | 1−8iT−67T2 |
| 71 | 1−3T+71T2 |
| 73 | 1−7iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1+9iT−83T2 |
| 89 | 1−16T+89T2 |
| 97 | 1+12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.247067626478045514271913854007, −8.630973745296834545337813472953, −7.53723849116246670227748605365, −6.56505660116425478338035465964, −5.65163070993118750506972687412, −5.19809093348276045843727451222, −4.34564168429581661114610950124, −3.57714894755216189061941912308, −2.94803915282220023452925440241, −1.62305666162658064570248079805,
0.46679520155248079724211613104, 1.32709665508464744154261438324, 2.07195983019963108428417745423, 3.41073894207917821460347287942, 4.00648329672614537788040158079, 5.33222587894705257868403150286, 6.13524271919595832263118252842, 6.84887719235403771576611924510, 7.19060392384695012532481959095, 7.940201670874709845002855367032