L(s) = 1 | + 3i·3-s + 3i·7-s − 6·9-s + 5·11-s + 2i·13-s − 4i·17-s + 4·19-s − 9·21-s + 6i·23-s − 9i·27-s − 6·29-s − 4·31-s + 15i·33-s + i·37-s − 6·39-s + ⋯ |
L(s) = 1 | + 1.73i·3-s + 1.13i·7-s − 2·9-s + 1.50·11-s + 0.554i·13-s − 0.970i·17-s + 0.917·19-s − 1.96·21-s + 1.25i·23-s − 1.73i·27-s − 1.11·29-s − 0.718·31-s + 2.61i·33-s + 0.164i·37-s − 0.960·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.535127736\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.535127736\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 - iT \) |
good | 3 | \( 1 - 3iT - 3T^{2} \) |
| 7 | \( 1 - 3iT - 7T^{2} \) |
| 11 | \( 1 - 5T + 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + 4iT - 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 - 6iT - 23T^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 41 | \( 1 + 9T + 41T^{2} \) |
| 43 | \( 1 - 10iT - 43T^{2} \) |
| 47 | \( 1 - 11iT - 47T^{2} \) |
| 53 | \( 1 + 11iT - 53T^{2} \) |
| 59 | \( 1 - 8T + 59T^{2} \) |
| 61 | \( 1 + 8T + 61T^{2} \) |
| 67 | \( 1 - 8iT - 67T^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 - 7iT - 73T^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + 9iT - 83T^{2} \) |
| 89 | \( 1 - 16T + 89T^{2} \) |
| 97 | \( 1 + 12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.247067626478045514271913854007, −8.630973745296834545337813472953, −7.53723849116246670227748605365, −6.56505660116425478338035465964, −5.65163070993118750506972687412, −5.19809093348276045843727451222, −4.34564168429581661114610950124, −3.57714894755216189061941912308, −2.94803915282220023452925440241, −1.62305666162658064570248079805,
0.46679520155248079724211613104, 1.32709665508464744154261438324, 2.07195983019963108428417745423, 3.41073894207917821460347287942, 4.00648329672614537788040158079, 5.33222587894705257868403150286, 6.13524271919595832263118252842, 6.84887719235403771576611924510, 7.19060392384695012532481959095, 7.940201670874709845002855367032