L(s) = 1 | + 5-s − 9-s + 11-s + 17-s − 19-s − 2·23-s + 25-s − 2·43-s − 45-s + 47-s + 55-s + 61-s + 73-s + 4·83-s + 85-s − 95-s − 99-s − 2·101-s − 2·115-s + 121-s + 2·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
L(s) = 1 | + 5-s − 9-s + 11-s + 17-s − 19-s − 2·23-s + 25-s − 2·43-s − 45-s + 47-s + 55-s + 61-s + 73-s + 4·83-s + 85-s − 95-s − 99-s − 2·101-s − 2·115-s + 121-s + 2·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯ |
Λ(s)=(=(13868176s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(13868176s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
13868176
= 24⋅74⋅192
|
Sign: |
1
|
Analytic conductor: |
3.45408 |
Root analytic conductor: |
1.36327 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 13868176, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.595807069 |
L(21) |
≈ |
1.595807069 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | | 1 |
| 19 | C2 | 1+T+T2 |
good | 3 | C2 | (1−T+T2)(1+T+T2) |
| 5 | C1×C2 | (1−T)2(1+T+T2) |
| 11 | C1×C2 | (1−T)2(1+T+T2) |
| 13 | C1×C1 | (1−T)2(1+T)2 |
| 17 | C1×C2 | (1−T)2(1+T+T2) |
| 23 | C2 | (1+T+T2)2 |
| 29 | C1×C1 | (1−T)2(1+T)2 |
| 31 | C2 | (1−T+T2)(1+T+T2) |
| 37 | C2 | (1−T+T2)(1+T+T2) |
| 41 | C1×C1 | (1−T)2(1+T)2 |
| 43 | C2 | (1+T+T2)2 |
| 47 | C1×C2 | (1−T)2(1+T+T2) |
| 53 | C2 | (1−T+T2)(1+T+T2) |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C1×C2 | (1−T)2(1+T+T2) |
| 67 | C2 | (1−T+T2)(1+T+T2) |
| 71 | C1×C1 | (1−T)2(1+T)2 |
| 73 | C1×C2 | (1−T)2(1+T+T2) |
| 79 | C2 | (1−T+T2)(1+T+T2) |
| 83 | C1 | (1−T)4 |
| 89 | C2 | (1−T+T2)(1+T+T2) |
| 97 | C1×C1 | (1−T)2(1+T)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.717109917227330457579181591885, −8.699629564000920235757333711119, −8.124982455574306957142741798460, −7.909236072443285415643004601586, −7.50783802004575073445301186780, −6.81166801410978967905108111328, −6.48957887246313796201305956739, −6.43768228897130868959087639998, −5.85600528650101313618957763664, −5.61881413269342878491488954252, −5.23116276040291331517536910185, −4.81419628247920123479889106032, −4.23782174999867611170028495022, −3.81565440144836153143760433219, −3.47791715399893294117677873613, −2.97264276023836715606033146379, −2.34453309674846738681748061847, −2.01209835935887637317845673145, −1.56922280159680543184160473022, −0.72593903728398656606338243250,
0.72593903728398656606338243250, 1.56922280159680543184160473022, 2.01209835935887637317845673145, 2.34453309674846738681748061847, 2.97264276023836715606033146379, 3.47791715399893294117677873613, 3.81565440144836153143760433219, 4.23782174999867611170028495022, 4.81419628247920123479889106032, 5.23116276040291331517536910185, 5.61881413269342878491488954252, 5.85600528650101313618957763664, 6.43768228897130868959087639998, 6.48957887246313796201305956739, 6.81166801410978967905108111328, 7.50783802004575073445301186780, 7.909236072443285415643004601586, 8.124982455574306957142741798460, 8.699629564000920235757333711119, 8.717109917227330457579181591885