L(s) = 1 | + 2.51·3-s + 2.85·5-s + 3.34·9-s − 2.34·11-s + 0.859·13-s + 7.20·15-s − 4.34·17-s + 19-s + 4.85·23-s + 3.17·25-s + 0.859·27-s + 9.37·29-s + 7.37·31-s − 5.89·33-s + 2.17·37-s + 2.16·39-s − 6.69·41-s + 0.353·43-s + 9.55·45-s − 5.54·47-s − 10.9·51-s + 9.55·53-s − 6.69·55-s + 2.51·57-s + 14.5·59-s + 12.9·61-s + 2.45·65-s + ⋯ |
L(s) = 1 | + 1.45·3-s + 1.27·5-s + 1.11·9-s − 0.705·11-s + 0.238·13-s + 1.85·15-s − 1.05·17-s + 0.229·19-s + 1.01·23-s + 0.635·25-s + 0.165·27-s + 1.74·29-s + 1.32·31-s − 1.02·33-s + 0.357·37-s + 0.346·39-s − 1.04·41-s + 0.0539·43-s + 1.42·45-s − 0.808·47-s − 1.53·51-s + 1.31·53-s − 0.902·55-s + 0.333·57-s + 1.89·59-s + 1.65·61-s + 0.304·65-s + ⋯ |
Λ(s)=(=(3724s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3724s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.149689379 |
L(21) |
≈ |
4.149689379 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 19 | 1−T |
good | 3 | 1−2.51T+3T2 |
| 5 | 1−2.85T+5T2 |
| 11 | 1+2.34T+11T2 |
| 13 | 1−0.859T+13T2 |
| 17 | 1+4.34T+17T2 |
| 23 | 1−4.85T+23T2 |
| 29 | 1−9.37T+29T2 |
| 31 | 1−7.37T+31T2 |
| 37 | 1−2.17T+37T2 |
| 41 | 1+6.69T+41T2 |
| 43 | 1−0.353T+43T2 |
| 47 | 1+5.54T+47T2 |
| 53 | 1−9.55T+53T2 |
| 59 | 1−14.5T+59T2 |
| 61 | 1−12.9T+61T2 |
| 67 | 1+4.34T+67T2 |
| 71 | 1−7.89T+71T2 |
| 73 | 1+2.23T+73T2 |
| 79 | 1−7.36T+79T2 |
| 83 | 1−1.83T+83T2 |
| 89 | 1−3.31T+89T2 |
| 97 | 1+18.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.487990110309229378319677790607, −8.138329237402858362441296685510, −6.96574417639384905792170847121, −6.51032919360125665819937545831, −5.43759133939516394622532790395, −4.73520529111362876360908983046, −3.68092717547008909006322633128, −2.56478679926460993918607264808, −2.45626779252593197297231129562, −1.19378433966741929290472365821,
1.19378433966741929290472365821, 2.45626779252593197297231129562, 2.56478679926460993918607264808, 3.68092717547008909006322633128, 4.73520529111362876360908983046, 5.43759133939516394622532790395, 6.51032919360125665819937545831, 6.96574417639384905792170847121, 8.138329237402858362441296685510, 8.487990110309229378319677790607