L(s) = 1 | + 3·5-s − 3·7-s + 4·11-s − 2·13-s − 3·17-s − 12·19-s + 25-s − 6·31-s − 9·35-s − 7·37-s − 6·41-s − 3·43-s − 9·47-s − 3·49-s + 18·53-s + 12·55-s − 12·59-s + 2·61-s − 6·65-s − 12·67-s + 9·71-s + 20·73-s − 12·77-s − 24·79-s − 10·83-s − 9·85-s + 6·91-s + ⋯ |
L(s) = 1 | + 1.34·5-s − 1.13·7-s + 1.20·11-s − 0.554·13-s − 0.727·17-s − 2.75·19-s + 1/5·25-s − 1.07·31-s − 1.52·35-s − 1.15·37-s − 0.937·41-s − 0.457·43-s − 1.31·47-s − 3/7·49-s + 2.47·53-s + 1.61·55-s − 1.56·59-s + 0.256·61-s − 0.744·65-s − 1.46·67-s + 1.06·71-s + 2.34·73-s − 1.36·77-s − 2.70·79-s − 1.09·83-s − 0.976·85-s + 0.628·91-s + ⋯ |
Λ(s)=(=(14017536s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(14017536s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
14017536
= 210⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
893.770 |
Root analytic conductor: |
5.46772 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 14017536, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C1 | (1+T)2 |
good | 5 | C22 | 1−3T+8T2−3pT3+p2T4 |
| 7 | D4 | 1+3T+12T2+3pT3+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 17 | D4 | 1+3T+32T2+3pT3+p2T4 |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1−10T2+p2T4 |
| 31 | D4 | 1+6T+54T2+6pT3+p2T4 |
| 37 | D4 | 1+7T+48T2+7pT3+p2T4 |
| 41 | D4 | 1+6T+74T2+6pT3+p2T4 |
| 43 | D4 | 1+3T−18T2+3pT3+p2T4 |
| 47 | D4 | 1+9T+76T2+9pT3+p2T4 |
| 53 | D4 | 1−18T+170T2−18pT3+p2T4 |
| 59 | C2 | (1+6T+pT2)2 |
| 61 | D4 | 1−2T−30T2−2pT3+p2T4 |
| 67 | C2 | (1+6T+pT2)2 |
| 71 | D4 | 1−9T+124T2−9pT3+p2T4 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1+12T+pT2)2 |
| 83 | D4 | 1+10T+38T2+10pT3+p2T4 |
| 89 | C22 | 1+110T2+p2T4 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.359247470924614125970790125691, −8.310080589934033374812375342089, −7.33713268528036076349461049532, −7.09046374063523696582329303791, −6.74069179733242319110287892029, −6.45394742968289184001431464816, −6.16318255530587707759055538034, −5.94728239294354965613847389707, −5.28505144718888428024789098250, −5.08379743035954149505590828294, −4.30570908196938274634522827852, −4.23642977810300404332541306626, −3.58569493556401252252580430744, −3.33471575680941272079501992305, −2.43470077497720609517368412384, −2.38466120869572987838380453888, −1.67036395773389906988686940996, −1.49264770548250293594637876598, 0, 0,
1.49264770548250293594637876598, 1.67036395773389906988686940996, 2.38466120869572987838380453888, 2.43470077497720609517368412384, 3.33471575680941272079501992305, 3.58569493556401252252580430744, 4.23642977810300404332541306626, 4.30570908196938274634522827852, 5.08379743035954149505590828294, 5.28505144718888428024789098250, 5.94728239294354965613847389707, 6.16318255530587707759055538034, 6.45394742968289184001431464816, 6.74069179733242319110287892029, 7.09046374063523696582329303791, 7.33713268528036076349461049532, 8.310080589934033374812375342089, 8.359247470924614125970790125691